US 2001/0029605 Al

mation as the name and version of the distribution unit, a list
of the components and their location on the computer, and
the source of the distribution unit. Additional fields in the
code store data structure can also contain a component
version, a component data type, and a digital signature if one
was affixed to the distribution unit.

[0014] During the installation, the package manager can
optionally scan the code store data structure to determine if
a component to be installed already exists on the computer
and updates the code store data structure with the location of
the later version of the component.

[0015] When a user requests execution of software, the
package manager uses the code store data structure to locate
the appropriate components for the operating system to use.
When the user requests the uninstallation of a software
package, the package manager deletes the appropriate com-
ponents from the computer and updates the code store data
structure accordingly.

[0016] The manifest file and distribution unit optionally
are combined into a distribution unit file.

[0017] The manifest file format is common across all types
of code and operating systems and easily extended to
embrace new code types are they arise. The manifest file and
distribution unit can be stored on all types of media from
traditional magnetic and optical disks to networked servers.
The distribution units for dependencies do not have to reside
on the same type of media as the distribution unit or the
manifest file that refers to the dependency. More than one
distribution unit can be resident in a distribution unit file and
a distribution unit file can contain a mixture of distribution
units containing different code types.

[0018] Thus, the software package manager, the manifest
file, the distribution unit and the code store data structure of
the present invention solve the problems with existing
distribution mechanisms. The manifest file is not particular
to a particular code type or operating system and allows for
the specification of nested software dependencies. Because
the manifest file contains the location of the distribution
units for any dependencies, the software package manager
can acquire and install the dependencies without requiring
manual intervention by the user. Different types of distribu-
tion units can be mixed in a distribution unit file so that a
single mechanism is used to acquire and install all types of
code.

[0019] The code store data structure maintained by the
software package manage contains information about the
installed software such as version and installation location,
and is used to resolve version discrepancies among software
programs that share components. The code store data struc-
ture is used by the package manager to locate necessary
component when the software is executed so that a compo-
nent stored in one directory can be readily shared by
software programs with components in different directories.
Finally, the code store data structure eases the uninstallation
process by centralizing all the information about installed
components.

[0020] The present invention describes systems, clients,
servers, methods, and computer-readable media of varying
scope. In addition to the aspects and advantages of the
present invention described in this summary, further aspects

Oct. 11, 2001

and advantages of the invention will become apparent by
reference to the drawings and by reading the detailed
description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] FIG. 1 shows a diagram of the hardware and
operating environment in conjunction with which embodi-
ments of the invention may be practiced;

[0022] FIGS. 2A, 2B and 2C are diagrams illustrating a
system-level overview of an exemplary embodiment of a
package manager of the invention;

[0023] FIGS.3A,3B,3C and 3D are flowchart of methods
to be performed by a client according to an exemplary
embodiment of the package manager of the invention; and

[0024] FIG. 4 is a diagram of an exemplary embodiment
of an entry in a code store data structure suitable for use by
the methods shown in FIGS. 3A, 3B and 3C.

DETAILED DESCRIPTION OF THE
INVENTION

[0025] In the following detailed description of exemplary
embodiments of the invention, reference is made to the
accompanying drawings which form a part hereof, and in
which is shown by way of illustration specific exemplary
embodiments in which the invention may be practiced.
These embodiments are described in sufficient detail to
enable those skilled in the art to practice the invention, and
it is to be understood that other embodiments may be utilized
and that logical, mechanical, electrical and other changes
may be made without departing from the spirit or scope of
the present invention. The following detailed description is,
therefore, not to be taken in a limiting sense, and the scope
of the present invention is defined only by the appended
claims.

[0026] The detailed description is divided into five sec-
tions. In the first section, the hardware and the operating
environment in conjunction with which embodiments of the
invention may be practiced are described. In the second
section, a system level overview of the invention is pre-
sented. In the third section, methods for an exemplary
embodiment of the invention are provided. In the fourth
section, a particular Open Software Description implemen-
tation of the invention is described. Finally, in the fifth
section, a conclusion of the detailed description is provided.

Hardware and Operating Environment

[0027] FIG. 1 is a diagram of the hardware and operating
environment in conjunction with which embodiments of the
invention may be practiced. The description of FIG. 1 is
intended to provide a brief, general description of suitable
computer hardware and a suitable computing environment in
conjunction with which the invention may be implemented.
Although not required, the invention is described in the
general context of computer-executable instructions, such as
program modules, being executed by a computer, such as a
personal computer. Generally, program modules include
routines, programs, objects, components, data structures,
etc., that perform particular tasks or implement particular
abstract data types.

[0028] Moreover, those skilled in the art will appreciate
that the invention may be practiced with other computer



