US 2001/0029605 Al

cation” in a World Wide Web browser, such as Microsoft
Internet Explorer 4. A plug-in application is often employed
to provide additional capabilities, such as multimedia or
interactive controls, to browsers. One type of control appli-
cation is that written to conform with Microsoft’s ActiveX
specifications. The plug-ins are usually written in object-
oriented languages such as C++ or Java and are typically
used on Web pages. The user may be prompted to download
the plug-in or it may be automatically downloaded when
needed.

[0038] Referring to FIG. 2A, Fred’s Software Company
wants to distribute the CoolestApp over the Internet from
Fred’s Software Company’s Web server 201 to a user’s
computer 203. Fred’s Software Company logically groups
the components for the CoolestApp together into a “distri-
bution unit”209. The components can include platform-
specific compiled binary files such as dynamic linking
library (.dll) files used by the Microsoft Windows family of
operating systems, Java bytecode (.class) files, or files that
contain optional installation instructions for how to use
certain components contained in the distribution unit, for
example, ActiveX controls may need to be registered before
use. The distribution unit 209 can be a separate file or can be
a portion of a “distribution unit file”205 as explained below.

[0039] Fred’s Software Company also creates a “mani-
fest” file 207 describing the CoolestApp. The CoolestApp
manifest file 207 contains information about CoolestApp,
including the name of the CoolestApp distribution unit 209,
the version number of the software package (all components
in the distribution unit 209 have the same version number in
this embodiment), and the operating systems under which
the CoolestApp executes. Fred’s Software Company
bundles the CoolestApp distribution unit 209 and manifest
file 207 into a distribution unit file 205 for storage on the
server 201.

[0040] The names of other files in the distribution unit file
205, such as a text file containing licensing information or
a “readme” file containing special instructions for the soft-
ware package, are listed in the manifest file 207. The
manifest file 207 also contains entries for software that is
required to run CoolestApp but which is not included in the
distribution unit file 205. Such required software represent
“dependencies” and frequently include such items as lan-
guage libraries and common object class libraries. A depen-
dency can also be another software package. The manifest
file 207 provides the ability to describe the software depen-
dencies in a recursive tree format, also known as a “directed
graph.”

[0041] In the present example, CoolestApp is an enhanced
version of a software program named “CoolApp” previously
distributed by Fred’s Software Company. Rather than com-
pletely rewriting CoolestApp, Fred’s Software Company
used the CoolApp components as a base and created addi-
tional components for the new features in CoolestApp. In the
interest of minimizing download time, Fred’s Software
Company does not include the original components for
CoolApp in the CoolestApp distribution unit 205. Instead
Fred’s Software Company inserts a dependency entry in the
manifest file 205 which directs a user’s browser to the
location on Fred’s Software Company server 201 holding
the distribution unit file 215 for CoolApp as illustrated in
FIG. 2B.

Oct. 11, 2001

[0042] The browser begins the installation of the Coole-
stApp software package to the local computer by download-
ing the CoolestApp distribution unit file 205. A software
package manager 211 running in the underlying operating
system on the user’s computer 203 extracts the manifest file
207 from the distribution unit file 209 and accesses an
installed package database 213 to determine that Fred’s
Software Company’s CoolestApp is not already installed.
The dependency entry in CoolestApp manifest file 207 alerts
the package manager 211 that the CoolestApp depends on
Fred’s Software Company’s CoolApp. The package man-
ager 211 determines that CoolApp has not been previously
installed and directs the browser to download the CoolApp
distribution unit file 215 from the server location specified in
the dependency entry.

[0043] Once the CoolApp distribution unit file 215 has
been downloaded to the user’s computer 203, the package
manager extracts the CoolApp manifest file 217 and deter-
mines that CoolApp does not have any dependencies. The
package manager 211 creates a private directory 221 for
Fred’s Software Company applications, named FSC,
extracts the CoolApp components from the distribution unit
219 into the FSC directory, and calls the underlying oper-
ating system installation facility to install the CoolApp
components. The package manager 211 registers the Cool-
App components in the installed package database 213 when
the installation is successful.

[0044] Referring to FIG. 2C, the package manager 213
extracts the CoolestApp components from the CoolestApp
distribution unit 209 to the FSC directory 221, calls the
installation facility, and registers the CoolestApp compo-
nents in the installed package database 213. The browser
now can run the CoolestApp helper application from the
FSC directory 221.

[0045] 1If the user downloads additional Fred’s Software
Company applications that depend upon the components in
either CoolApp or CoolestApp, the package manager 211
will use the already installed components to satisfy any
dependencies that reference installed software package
unless the additional applications require versions later than
that installed.

[0046] 1If after running the CoolestApp helper application,
the user decides that CoolestApp is not needed, the user
employs the underlying operating systems uninstall facility
to uninstall CoolestApp. The uninstall facility invokes the
package manager 211 which determines if the CoolApp and
CoolestApp components are being used by other applica-
tions and deletes the software packages from the FSC
directory 221 if not. The package manager 211 also deletes
the package entries from the installed package database 213
when the packages have been deleted from the FSC direc-
tory 221.

[0047] The system level overview of the operation of an
exemplary embodiment of the invention has been described
in this section of the detailed description. The package
manager and its supporting files have been described in
relation to installing a software package having a single
dependency. While the invention is not limited to any
particular distribution media, for sake of clarity a simplified
version of Internet software distribution has been described.



