US 2001/0029605 Al

Methods of an Exemplary Embodiment of the
Invention

[0048] In the previous section, a system level overview of
the operation of an exemplary embodiment of the invention
was described. In this section, the particular methods per-
formed by a client or local computer of such an exemplary
embodiment are described by reference to a series of flow-
charts. The methods to be performed by the client computer
constitute computer programs made up of computer-execut-
able instructions. Describing the methods by reference to a
flowchart enables one skilled in the art to develop such
programs including such instructions to carry out the meth-
ods on suitable computerized clients (the processor of the
clients executing the instructions from computer-readable
media).

[0049] The software package manager of the present
invention is described as providing three major functions to
the runtime environment of the local computer on which it
runs as illustrated in FIGS. 3A-3D. It manages the installa-
tion of software packages, it locates necessary components
when software is executed, and it supports the uninstallation
of software. The package manager uses the installed package
database, also called a “code store” data structure, to track
components of software packages that have been installed
on the local computer. One of skill in the art will, upon
reading the following description of the code store data
structure, recognize that any type of organized data struc-
ture, including various type of data bases, is suitable for use
with the package manager.

[0050] As in the exemplary embodiment described in the
previous section, the manifest file contains dependency
entries specifying locations of distribution units containing
required software components. The distribution unit file is
suitable for distributing software packages on traditional
media, such as CD-ROM or floppy disk, as well as over a
wide area network, such as the Internet. The package man-
ager extracts the manifest file and the distribution unit from
the distribution unit file. In an alternate embodiment, the
distribution unit and the manifest file can be stored sepa-
rately on a network and the manifest file contains the
network location of its corresponding distribution unit.

[0051]

[0052] Referring first to FIGS. 3A and 3B, a flowchart of
methods to be performed by a client according to an exem-
plary embodiment of the invention when installing new
software is shown. This method is inclusive of the steps or
acts required to be taken by the package manager.

[0053] When the distribution unit file for a software pack-
age is loaded onto a computer for installation, the software
package manager running in the computer acquires the
manifest file for processing (step 301). In an embodiment in
which the manifest file is distributed in a distribution unit
file, the package manager acquires the distribution unit file
and extracts the manifest file from the distribution unit file.
The package manager checks the name and version of the
software package contained in the manifest file against the
code store data structure to determine if the software pack-
age has already been installed (step 303). If so, the package
manager exits (step 321).

[0054] 1If the software package is not installed, the package
manager checks the manifest file to determine if the software

Installation

Oct. 11, 2001

package requires the installation of other software compo-
nents (dependencies) not supplied as part of the distribution
file unit (step 305) before installing the software package
from the distribution unit. Such is frequently the case when
a software package is written in a common programming
language such as Java or C++ which depend on object class
or language libraries being present.

[0055] If there are dependencies, the package manager
checks the code store data structure to determine if the
dependencies are installed on the local computer (step 327).
If not, the package manager uses information stored in the
manifest file about the dependencies to locate a source for
the dependencies. The package manager than acquires a
dependency from the source specified in the manifest file
(step 329). In one embodiment, the source is a remote server
designated by a uniform resource locator (URL) path name.
In an alternate embodiment, the source is a server on a local
area network and the path name is a network drive.

[0056] After acquiring the dependency from the source,
the package manager installs the dependent software com-
ponents on the local computer. The installation of the
dependent components is identical to the installation process
for the original software package which will be described in
detail below in conjunction with steps 307 through 325.
Because each dependency can itself include dependencies,
the package manager will install all the nested dependencies
prior to finishing the installation of the original software
package.

[0057] Once all the dependencies are installed, the pack-
age manager determines if a directory for the software
package exists (step 307) and creates one if it does not (step
309). The package manager assigns the directory a unique
name that has a high probability of being different for every
computer on which the software package is installed. In one
embodiment, the unique name is generated using a standard
hashing algorithm having the software package name as
input.

[0058] The package manager extracts the components for
the software package from the distribution unit file into the
directory (step 311). In one embodiment, the components are
gathered into an uncompressed “zip” formatted data file
which contains a directory of the files within it. Other
embodiments which use similar file structures to group the
components together with a directory structure will be
readily apparent to one skilled in the art. The package
manager then invokes the installation facility provided by
the operating system to install the components (step 313).

[0059] When the installation is successful (step 315), the
package manager updates the code store data structure with

the information contained in the manifest file (step 317 and
FIG. 3B).

[0060] The package manager creates an entry in the code
store data structure for the software package that includes
the name of the software package, the version number, and
the name of the directory (step 331). The names of the
components in the software package are stored in the
corresponding software package entry in code store data
structure (step 333).

[0061] Inone alternate embodiment shown in FIG. 3B, as
part of the update process for the code store data structure,
the package manager scans the code store data structure to



