US 2001/0029605 Al

[0080] Additionally, the manifest file can specify an XML
tag, “namespace,” that causes the package manager to
isolate software packages from one another even if the same
component is used by multiple packages:

[0081] <JAVA>

[0082]
[0083] <NameSpace>Fred’s Software Company</
NameSpace>

[0084] Thus the use of namespaces avoids version mis-
matches among software packages.

[0085] A namespace is analogous to a directory in a file
system, such as implemented in the Windows family of
operating systems, in that installing applications in different
directories provides isolation for the applications. Previ-
ously a namespace was global to all applications installed on
a system so that all files and components in the namespace
were accessible by the applications. The global nature of
previous namespaces presents difficulties in naming files and
components because an application programmer has to
avoid common names to prevent potential conflicts with
identically named files and components for another appli-
cation installed in the same namespace. Installing the second
of the two applications would likely cause one or both
applications to fail, just as placing all files for all applica-
tions installed on a computer into a single directory fre-
quently causes conflicts between the applications.

[0086] In the present invention, the presence of a
namespace XML tag in the manifest file causes the package
manager to associate the files and components of the cor-
responding application in the code store data structure with
the unique namespace specified in the tag. When an appli-
cation is executed, the package manager passes the associ-
ated namespace name to the computer’s runtime environ-
ment so that any files and components installed in that
namespace are visible to the application while files and
components installed in other namespaces are not. Using the
example XML tag above, Fred’s CoolestApp is associated
with a namespace called “Fred’s Software Company,”
would execute in the “Fred’s Software Company”
namespace, and have access to any files or components
installed in the “Fred’s Software Company” namespace.
Similarly, an XML tag for Bob’s identically named “Coole-
stApp” would specify “Bob’s Software Company” as the
namespace, execute in the “Bob’s Software Company”
namespace, and have access to any files or components
installed in the “Bob’s Software Company” namespace.
Neither Bob’s CoolestApp nor Fred’s CoolestApp can
access a common component or file installed in the other’s
namespace. Therefore, because of the isolation that
namespaces provide, both Fred and Bob are assured their
applications will function correctly even though identically
named and having common components or files, and that the
applications will continue to function correctly irregardless
of the number of CoolestApps using the same components
or file which may be installed on the computer.

[0087] Continuing with the distribution of Fred’s Software
Company’s CoolestApp, the manifest file in a first exem-
plary embodiment in this section is stored separately from
the distribution unit at http://www.fsc.comncoolestapp.osd.
The corresponding distribution unit is stored in a cabinet file
at http://www.fsc.org/coolestapp.cab. The CoolestApp’s

Oct. 11, 2001

dependency on the components of the earlier CoolApp is
indicated with a “DEPENDENCY” tag and refers the pack-
age manager to the CoolApp manifest file at http://www.f-
sc.org/coolapp.osd (not shown). The CoolApp manifest file
directs the package manager to the location of the distribu-
tion unit for the CoolApp.

<SOFTPKG NAME=“com.fsc.www.coolestapp” VERSION=*1,0,0,0">
<TITLE>CoolestApp</TITLE>
<ABSTRACT>CoolestApp by Fred’s Software Company
</ABSTRACT>
<LICENSE HREF=“http://www.fsc.com/coolestapp/license.
html” />
<!—FSC’s CoolestApp is implemented in native code -->
<IMPLEMENTATION:
<OS VALUE=“WinNT”><OSVERSION VALUE=
“4,0,0,07/></0S>
<OS VALUE=“Win95”/>
<PROCESSOR VALUE=“x86" />
<LANGUAGE VALUE=“en” />
<CODEBASE HREF=“http://www.fsc.org/coolestapp.cab” />
<!—CoolestApp needs CoolerApp -->
<DEPENDENCY>
<CODEBASE HREF=“http://www.fsc.org/coolapp.osd” />
</DEPENDENCY >
</IMPLEMENTATION>
</SOFTPKG>

[0088] Had the CoolApp manifest file been stored in a
cabinet distribution unit file along with the CoolApp com-
ponents, the location of the distribution unit file would have
been http://www.fsc.org/coolapp.cab.

[0089] In a second exemplary embodiment of the inven-
tion for purposes of this section, components contained in a
distribution unit file are caused to be installed by OSD tags
embedded on a Web page. If Fred’s Software Company’s
Web page requires additional software to be downloaded
and installed for viewing the page, FSC can use the OSD
vocabulary within HTML commands to have the user’s
browser download the necessary components as shown in
the two examples below.

<OBJECT CLASSID=
“clsid:9DBAFCCF-592F-101B-85CE-00608CEC297B”
VERSION=“1,0,0,0”
CODEBASE="http://www.fsc.com/coolestapp.osd”
HEIGHT=100 WIDTH=200 >
</OBJECT>
_or-
<APPLET code=myapplet.class id=coolestapp width=320 height=240>
<PARAM NAME=useslibrary VALUE=“coolestapp”>
<PARAM NAME-=useslibraryversion VALUE=%1,0,0,0">
<PARAM NAME-=useslibrarycodebase VALUE=
“http://www.fsc.com/coolestapp.osd
“>
</APPLET>

[0090] The HTML <OBJECT> or <APPLET> tag informs
an OSD-aware client browser, such as Microsoft Explorer 4,
that there is additional software required to view the Web
page. The browser invokes the package manager to execute
the software package if it is already installed or to install it
if not. If not already installed, the package manager instructs
the browser to download the distribution file unit and
proceeds with the installation as described in the previous



