US 2001/0029605 Al

section. The “CODEBASE” element in <OBJECT> and the
“useslibrarycodebase” tag in <APPLET> can point to the
manifest file or to the distribution unit file.

[0091] In a third exemplary embodiment of the invention
for purposes of this section, a distribution unit file is used to
automatically distribute software from Fred’s Software
Company’s server to the user’s computer. This automatic
distribution across a network employs “channels” to which
the user subscribes to automatically “push” software com-
ponents through a client agent such as a browser. The
channel is described using a Channel Definition Format
(CDF) which is also based on XML. A CDF file uses the
OSD elements to inform a CDF-aware client agent as to
what software components should be downloaded and
installed.

<CHANNEL HREF=“http://www.fsc.com.intropage.htm”>
<SELF=“http://www.fsc.com/software.cdf” />
<TITLE>A Software Distribution Channel</TITLE>
<SOFTPKG
HREF="http://www.fsc.com/aboutsoftware.htm”
AUTOINSTALL="yes”
NAME=“{D27CDB6E-AE6D-11CF-96B8-444553540000}”
VERSION=“1,0,0,0">
<IMPLEMENTATION>
<OS VALUE=“WinNT”><OSVERSION VALUE=“4,0,0,0"/>
</OS>
<OS VALUE=“Win95"/>
<PROCESSOR VALUE=“x86" />
<CODEBASE HREF="“http://www.fsc.com/coolestapp.cab” />
</IMPLEMENTATION>
</SOFTPKG>
</CHANNEL>

[0092] This section has described a particular implemen-
tation of the package manager which is directed to install
software by OSD elements embedded in an XML document.
The processing of a manifest file described in previous
section when written as XML document is described. In
addition, alternate embodiments in which a separate XML
document resides on a Web page to direct a browser to
invoke the package manager to install a software package is
also described in this section.

Conclusion

[0093] A software package manager has been described
which manages the installation, execution and uninstallation
of software packages acquired through various media. The
software manager uses a manifest file, a distribution unit,
and a code store data structure to accomplish its functions.
Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement which is calculated to
achieve the same purpose may be substituted for the specific
embodiments shown. This application is intended to cover
any adaptations or variations of the present invention.

[0094] For example, those of ordinary skill within the art
will appreciate that the file and data structures described
herein can be easily adapted to future distribution media.
Furthermore, those of ordinary skill within the art will
appreciate that future extensible languages which are plat-
form and operating system independent can be used to direct
the software package managers actions.

Oct. 11, 2001

[0095] The terminology used in this application with
respect to is meant to include all hardware and software
platforms. Therefore, it is manifestly intended that this
invention be limited only by the following claims and
equivalents thereof.

We claim:
1. A computerized method for managing software pack-
ages on a computer comprising the steps of:

acquiring a manifest file that describes a distribution unit
for a software package;

resolving software dependencies for the software package
as specified by the manifest file;

acquiring the distribution unit for the software package;

extracting components in the software package from the
distribution unit into a directory on the computer;

causing the installation of the software package on the
computer; and

updating a code store data structure on the computer with
information from the manifest file pertaining to the
software package.
2. The method of claim 1, wherein the step of resolving
the dependencies comprises the steps of:

acquiring, for each of the software dependencies in turn,
a dependency manifest file that describes a dependency
distribution unit for a dependency software package;

resolving software dependencies for the dependency soft-
ware package as specified by the dependency manifest
file;

acquiring the dependency distribution unit for the depen-
dency software package;

extracting components in the dependency software pack-
age from the dependency distribution unit into a direc-
tory on the computer;

causing the installation of the dependency software pack-
age on the computer; and

updating a code store data structure on the computer with
information from the dependency manifest file pertain-
ing to the dependency software package.

3. The method of claim 1, wherein the software depen-
dencies are nested so that the step of resolving the depen-
dencies is processed recursively.

4. The method of claim 1 further comprising the step of:

locating the directory containing the components for the
software package using the code store data structure
when the execution of software in the software package
is requested.

5. The method of claim 1 further comprising the steps of:

modifying the code store data structure to reflect the
removal of the software package when the uninstalla-
tion of the software package is requested; and

deleting each component for the software package from

the directory when the code store data structure indi-

cates no other software package uses the component.

6. The method of claim 1, wherein the manifest file

specifies the directory into which the components of the
software package are extracted.



