US 2007/0233709 Al

indicates an objects category), and 6) query results. Smart
containers may leverage any of these in order to best
represent the logical business object. Structure in compound
objects should describe important attributes, hierarchy, rela-
tionship, and version binding. In some embodiments, ver-
sion binding describes which version of a document should
be referenced. The binding options can be specified with the
following options: 1) symbolic version label, such as
“Approved”, or “Current”, etc. 2) explicit version label such
as “1.0” or “1.17, etc. 3) early binding meaning associate the
document of the specified version at design time, and/or 4)
late binding meaning associate the document of the specified
version at runtime. In 602, structure links between an object
and other objects are specified. For example, one object is a
root folder and other objects are folders or documents within
the root folder or other folders. In some embodiments, 602
may be applied/defined differently for the various nodes or
objects of the smart container.

[0022] FIG. 7 is a flow diagram illustrating an embodi-
ment of a process for defining policies. In some embodi-
ments, process 404 of FIG. 4 is implemented by FIG. 7. In
various embodiments, a policy comprises a retention policy
that is associated with a root folder or other folder, check-in
rules for member documents (for example, do not allow
same version on check-in), auto-naming rules for smart
container and member objects (for example, object names
are assigned when created, when there is a lifecycle state
change, etc.), role based privilege policy, rule for when
placeholder should be replaced, policy for placement of an
incoming member object within a runtime structure, work-
flows (e.g., a workflow defines the activities and flow of a
business process, for example a loan application workflow
would automate the flow of a loan file through the loan
approval process.), specific to smart container or member
objects, lifecycles for smart container or member objects
(e.g., a document typically moves through different stages in
which it may have different meta-data values, security,
folder location, etc., and these stages can be modeled and
automated with a lifecycle—one example of a lifecycle is
the typical draft, review, approve stages of a document),
content storage policy, distributed content configuration
policy, content caching policy, full text indexing policy, etc.
In 700, a policy is specified. In 702, the scope and inherit-
ance of the policy is specified. The scope of a policy
determines to which objects of a smart container a policy
will be applied when it is evoked at instantiation or runtime.
When a policy is associated to an object which may contain
children (e.g. a folder or object with relationships to “child’
objects), the user can specify if the given policy is to be
inherited, how deep the inheritance applies, and whether or
not the policy can be overridden or narrowed (further
constrained) by policies associated to children objects. In
704, the policy conflict resolution is specified. It is possible,
if not likely, that a smart container or its contents has
associated policies that conflict. For this reason a mecha-
nism for conflict resolution is specified. A “static resolution’
mechanism may be invoked to resolve the conflict at time of
association. A ‘dynamic resolution’ mechanism may be
invoked to resolve the conflict at time of instantiation and
runtime (i.e., when a given policy is applied or evoked). The
appropriate mechanism depends on the given policy and
association. In 706, object(s) or structure links associated
with policy are defined. In some embodiments, 706 is the
first step in the flow—for example, an object class is defined;

Oct. 4, 2007

policies are associated with the object class; and policy
inheritance and conflict resolution are defined. In 708, it is
determined if the process is done. If not, then control passes
to 700, otherwise the process ends.

[0023] FIG. 8 is a flow diagram illustrating an embodi-
ment of a process for defining roles. A role can be assigned
a set of users and a set of entities and services that users in
that role can access. In some embodiments, process 406 of
FIG. 4 is implemented by FIG. 8. In 800, a role is specified.
For example, in the case of a loan processing two of the roles
included are an account executive and a loan closing spe-
cialist. The account executive is responsible for processing
a specific aspect of a loan application such as reviewing and
validating incoming documents and recommending whether
to deny the loan or send it on for further consideration. The
loan closing specialist is responsible for the final review of
all documents, insuring compliance with legal and regula-
tory requirements, funding the loan, and promoting the loan
file to the “closed” state. There is a ‘Fund Loan’ workflow
defined that automates the process of funding a loan. The
ability to start this workflow should be available to the loan
closing specialist but not to the account executive. In addi-
tion, the Fund Loan workflow should only be available when
a loan file is selected and not when some other object of the
smart container is selected. In 802, object(s) or structure
links associated with role are specified. Zero or more roles
can be applied to an Object in a smart container in order to
constrain the domain of users that can operate on instances
of that Object and to define the services and entities that are
accessible to each user within the context of that object. In
804, it is determined if the process is done. If not, then
control is passed to 800, otherwise the process ends. In some
embodiments, an object class is defined and then roles are
associated with the object class. In some embodiments, the
process flow is 1) define a role including its members and
services and entities available to users of that role, and 2)
associate role to object class.

[0024] FIG. 9 is a flow diagram illustrating an embodi-
ment of a process for instantiating a smart container using a
smart container template or other instance as a source. In
some embodiments, process 302 of FIG. 3 is implemented
using the process of FIG. 9. In the example shown, in 900
the source for creating an instance is specified. In various
embodiments, a new smart container can be created from a
saved smart container template, or from another runtime
instance. In 902, template parameter values and other instan-
tiation-time modifications for the instance are specified.
Template parameters are initial values (e.g., content, meta-
data, or policies) that change from instance to instance and
are required in order to create a new instance. For example,
when creating a room smart container from a template, the
user may need to select the initial members; when creating
a loan file smart container from a template, the loan pro-
cessor may need to specify an originating document, i.e.
loan application; or when creating a finished goods speci-
fication smart container, the user may need to enter the name
and description of the end product. A Smart Container
cannot be successfully created until values have been sup-
plied for all required parameters. In some embodiments,
auto-generated forms will be used to prompt users for
parameter values. In 904, instantiation actions are executed.
Instantiation may result in one or more of the following
actions: object creation, replacing placeholders with actual
objects, policy evaluation and execution including actions



