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moderate D_<75 observed in the microfluidic systems
described herein, the secondary rotational flow, or Dean flow,
consists of only two vortices. The velocity magnitude of the
Dean flow scales as U,~pD,*/(uD,,) and therefore, Stokes
drag on suspended particles due to this secondary flow
becomes significant for large D,. In particular, the Dean flow
velocity dependence on Dean number can be seen in FIG. 6B.
FIG. 6B illustrates a simulation of Dean flow at an average
streamwise velocity of 1 m/s, corresponding to a Dean num-
ber of ~10. The geometry in FIG. 6B is 50-um in width at the
smaller turn and 80-um at the larger turn. The main flow is
coming out of the page. FIG. 6C is a graph further illustrating
average secondary flow (vortex) velocity magnitude as a
function of changing Dean number for a single geometry. A
quadratic relationship between D, and average vortex veloc-
ity is observed for a constant geometry and agrees with
theory.

[0157] In general, the drag due to Dean flow, or Dean drag
(Fp) scales as
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[0158] Equilibrium separations can be conducted consid-
ering the balance of these two forces, Dean drag 64 and
inertial lift 66, as shown in FIG. 7. In particular, FIG. 7
illustrates the cross-section of any asymmetric curved chan-
nel depicting the superposition of the four stable positions
68a, 68h, 68c, 684 due to inertial lift forces with the Dean
flow. A possible mechanism for biasing a single minimum is
also presented. The dominant viscous drag due to the Dean
flow acts strongly at the channel mid-line, directing particles
to one side of the channel over the other (for the opposite turn
this force is of less magnitude in the opposite direction, and
does not surpass the inertial force). Once a particle 70 is
trapped in this minimum, it can remain because the viscous
drag 64 at the split point of the two vortices is less in magni-
tude than the shear gradient-induced lift 66. Particles at the
top and bottom minimum may not remain trapped because the
viscous drag acts strongly here as well, and in the direction of
a weaker shear gradient.

[0159] The ratio of lift to drag forces, R, scales as Rf~6"1
(a/D,)* for a constant R_. Separations are ideal when Rz=1
within the channel cross section for a particle of a given size
and less than 1 for a particle of another size. For R ; lift forces
that push particles to an equilibrium position dominate, while
for R <1, dominant Dean drag overwhelms these equilibrium
positions and leads to mixing of particles. The dependence on
particle diameter cubed suggests effective separation of par-
ticles with small size differences. The R, relation also sug-
gests that the separation can be tuned to separate particles
over a range of diameters by modification of the geometry D,,
and curvature ratio (9).

[0160] Theory predicts a limit to the speed of equilibrium
separations. Previously, the dependence of the lift/drag ratio,
R, on R, was neglected. When this dependence is taken into
account, velocities higher than optimum are predicted to lead
to defocusing. This is because the inertial lift force scales with
the channel velocity squared (U,,?) and the lift coefficient (£.),
where the lift coefficient decreases with increasing U,,.
Therefore, the inertial lift force increases at a rate less than
U,2. This can be compared to the drag force due to Dean flow
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which scales with U, 2. This leads to the ratio of these forces,
Ry decreasing with increasing U,z

[0161] Therefore, three flow regimes can be considered: (1)
At low fluid velocities, R, may be larger than 1 over the
majority of the channel cross section; however, the magni-
tudes of F_ and F , are too low to create focused streams within
the length of channel. (2) At intermediate fluid velocities, R,
may be greater or equal to 1 over a limited region of the
channel cross section, and the magnitude of forces is large
enough to create focusing to one or more streams. (3) For high
fluid velocities, R is less than 1 over the entire channel cross
section, and Dean drag is dominant, leading to particle mix-
ing.

[0162] Using R, one can predict the particle size cutoff
below which focusing does not occur. R -varies in magnitude
across the channel cross section due to variationin F, and F,
over this region. The functional form of this variation, how-
ever, is not currently known and thus it is difficult to predict a
priori a particle size cutoff for a given geometry (i.e., for what
particle size does R initially become <1 throughout the chan-
nel cross section). Thus, empirically determined cutoffs can
give unknown parameters in R, The known geometry and
cutoff can then be inserted into the equation R =1 to find the
scaling of unknown positional dependent factors. This is
because the particle diameter below which the ratio, R first
becomes less than 1 over the entire channel cross section
corresponds to the size cutoff in that channel geometry. In
other words, with decreasing particle diameter, R .decreases
to less than 1, resulting in particle mixing due to Dean drag
forces dominating.

[0163] A semi-empirical relationship is provided quantita-
tively as follows: First, the condition Rf(xcl):k(rac3 /D, H=1is
produced, where x_, are the coordinates of the final positionto
become less than 1 within the channel cross sectionand kis a
scaling factor. The empirical parameters are the channel
radius of curvature (r), the cutoff size (a_), and the channel
hydraulic diameter. Solving for k for one or more experimen-
tal systems allows the development of a relationship that can
be applied to an unknown system and size cutoff:

[0164] This treatment assumes that both systems are oper-
ated at a constant R, and that particle sizes are small com-
pared to the flow field, since x_; is assumed to remain inde-
pendent of particle size.

[0165] A simplified expression that dictates the geometry
of a new channel to separate at a new cutoff can then be
developed. If the same radius of curvature is maintained, then
an empirical relation for D,, as a function of the cutoff diam-
eter can be written as:
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[0166] If height is the dominant factor in determining the
inertial lift force and channels with large widths are consid-
ered, such that h is the dominant dimension for Dean flow, the
equation for D,,; above can be rewritten as h,=h, (a_,/a_, )>*.
In general, particles close to the center and outer wall will



