US 2006/0123412 Al

particular processes executing on the computer. High-level
software abstractions include, for example, applications
programs (e.g., Microsoft® Publisher® desktop publishing
product) and families of applications (e.g., Microsoft®
Office® suite of office productivity products).

[0016] For example, the concept of an application pro-
gram is part of a user-centric model. Where a user sees an
application program (or group of programs) that helps the
user accomplish a specific task (e.g., word processing,
spreadsheet analysis, and database management), a conven-
tional software-based computer merely sees one or more
active processes. There is nothing inherent in the architec-
ture of the conventional software-based computers that
descriptively and necessarily links the active processes (and
their load model sources) with the representation of the
application program that the user sees (typically via a
graphic user-interface (GUI) process).

SUMMARY

[0017] Described herein is at least one implementation
employing multiple self-describing software artifacts per-
sisted on one or more computer-storage media of a software-
based computer. In this implementation, each artifact is
representative of at least part of the software components
(e.g., load modules, processes, applications, and operating
system components) of the computing system and each
artifact is described by at least one associated “manifest,”
which include metadata declarative descriptions of the asso-
ciated artifact.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The same numbers are used throughout the draw-
ings to reference like elements and features.

[0019] FIG. 1 shows an example operating scenario for an
implementation described herein.

[0020] FIG. 2 shows a flow diagram showing one or more
methodological implementations, described herein, for man-
agement of persisted self-describing artifacts and perform-
ing gatekeeping on execution of software components com-
posed of, at least in part, of the self-describing artifacts.

[0021] FIG. 3 shows a flow diagram showing a method-
ological implementation described herein to verify the per-
sisted self-describing artifacts.

[0022] FIG. 4 shows a flow diagram showing a method-
ological implementation described herein to inspect an
offline “system image” composed of, at least in part, of the
persisted self-describing artifacts.

[0023] FIG. 5 is a diagram showing an example inter-
relationship structure amongst software components (e.g.,
load modules, processes, applications, and operating system
components), the example structure being in accordance
with an implementation described herein.

[0024] FIG. 6 shows a flow diagram showing a method-
ological implementation described herein to create and
manage application abstractions.

[0025] FIG. 7 is an example of a computing operating
environment capable

DETAILED DESCRIPTION

[0026] The following description sets forth techniques
implementing a computing technology for a software-based

Jun. &, 2006

computer employing self-describing software artifacts. An
exemplary implementation of these techniques may be
referred to as an “exemplary self-describing artifact archi-
tecture.”

[0027] The exemplary self-describing artifact architecture
provides a refreshing and invigorating approach to the realm
of computer science. Rather than being no more than an
accumulation of bits resulting from series of ad hoc events
during the lifetime of a software-based computer, the con-
tents and configuration of the computer utilizing this new
architecture is an organized, stable, reliable, robust, and
deterministically constructible collection of self-defining
software artifacts.

[0028] Before describing the new architecture, a brief
introductions of terminology is appropriate. The following
terms, as used herein, are briefly defined here. However, the
reader is encourage the read the full text to understand and
appreciate the full meaning of each term in the context of the
full description.

[0029] Software Artifact (or simply “artifact”) is an
offline manifestation of an executable entity (e.g., a
process, an application, a component of the operating
system); it includes, for example, load modules and
configuration files.

[0030] Manifest is metadata declarative description of
an executable entity. A manifest may be associated with
each manifestation of an executable entity. Manifest
may be static or dyamic.

[0031] Prototype is an executable (or “runable’”) mani-
festation of an executable entity, but a prototype of an
entity is not in an executing state.

[0032] Abstraction is a manifestation of an executable
entity when it is in an executing state (“it is running”).

[0033] Component is a part, portion, or constituent
element of a manifestation of an executable entity; For
example, an application includes process components
and a process includes executable instructions as com-
ponents.

Exemplary Self-Describing Artifact Architecture

[0034] FIG. 1 illustrates one view of an exemplary self-
describing artifact architecture 100. In this view, the archi-
tecture 100 is implemented on a software-based computer
102, which is configured with a memory 110 (e.g., volatile,
non-volatile, removable, non-removable, etc.). The com-
puter 102 has an operating system (OS) 112, which is active
in the memory 110.

[0035] The computer 102 has access to at least one com-
puter-storage device 120 (e.g., a “hard disk”). The computer-
storage device 120 contains the contents and configuration
that embody the computer 102. The contents include various
software components, which include (by way of example
and not limitation) an operating system (OS), the OS ele-
ments, all installed applications, and all other associated
components (e.g., device drivers, installation files, data, load
modules, etc.). The configuration includes the specified
properties of each software component and the defined
interrelationship amongst the components.

[0036] For the purposes of this discussion, references to
the “system” represents the software-based computer 102 as



