US 2006/0123412 Al

[0081] compiler or optimization tool to have a precise
description of the code in the artificat and the environ-
ment in which it executes;

[0082] error-detect tool to have a precise description of
the code in the artificat and the environment in which
it executes;

[0083] The manifest need not contain all available meta-
data about a program or system, but it needs to provide
sufficient information to enable reliably locating additional
metadata. In one embodiment, for example, the binary load
modules (EXE, DLLS, etc.) for a program contain metadata
that references metadata associated with specific load mod-
ules. In this embodiment, the manifest informs the system of
the existence of this additional metadata within the load
modules.

[0084] Inone embodiment, the manifest identifies the type
of each subcomponent of the manifest. The subcomponent
type identifies a piece of helper software, which knows how
to interpret the contents of the subcomponent, extract addi-
tional metadata from the component, and derive additional
metadata about the component.

[0085] For example, in one embodiment, load modules
described in a manifest are expressed in an abstract instruc-
tion set that allows a verification tool to determine if they
obey certain software properties, such as conformance to
communication requirements. The manifest for the load
modules identifies the exact abstract instruction set used for
each load module so that the system verifier 164 can
determine which helper software to load to verify specific
system properties, such as the communication requirements.

[0086] In yet another aspect of an embodiment, the infor-
mation used to determine compatibility among the parts of
a system is delivered independently of the components, as
well as along with them. This information can arrive from
many sources, and a local administrator or agent can define
or follow rules for disambiguating partial or contradictory
information.

[0087] In yet another aspect of an embodiment, the infor-
mation used to determine compatibility among the parts of
a system changes over time, as new information becomes
available at an appropriate location, or as old information is
revoked.

[0088] Manifests may be combined into graphs to describe
arbitrarily complex software systems. Manifests may refer
to external manifests as dependencies. Manifests may also
contain embedded manifests. In one embodiment, the mani-
fest for an application contains or uses manifests for sub-
components of the application.

[0089] Depending on packaging decisions made by the
publisher of the application, subcomponents can be either
embedded in the manifest or referenced as external entities.
In one embodiment, external dependencies include a name
and version number of the dependency, or other clarifying
information. In another embodiment, external dependencies
are named through a signed digest. In another embodiment,
this information can be updated, revoked, and clarified (i.e.,
disambiguated).

[0090] Inone embodiment, the manifest for an application
is packaged and delivered with its associated application. In
another embodiment, the manifest for an application is

Jun. &, 2006

packaged and delivered separately from its associated appli-
cation. With this, the presumably multiple components of an
application may be delivered separately and after delivery of
its associated manifest.

[0091] Inoneembodiment, external manifests may also be
referenced as sources of external information. These exter-
nal manifests may be named individually, or they may be
named as members of a group.

[0092] There are two forms of the manifests: static and
dynamic. The static manifests are stored in association with
software artifacts. The dynamic manifests are employed
during the runtime of an executable component associated
therewith. The dynamic manifest includes the static meta-
data (which is still available at runtime) and additional
dynamic metadata that are constructed at runtime to connect
runtime system elements, like processes and operating sys-
tem objects.

[0093] This aspect further enables bridging from low-level
implementation concepts to higher-level concepts. The self-
describing feature of the software artifacts is useful on a
running and active system and not just a static system. For
example, the “well-formedness” and or consistency of a
running system of processes can be verified similarly to the
verification of the system image.

[0094] In one embodiment, “iiber” manifests describe all
software available on the computer 102, directly or indi-
rectly, and whether such software is installed or not.

Methodological Implementation of Exemplary Self-De-
scribing Artifact Management and Gatekeeping

[0095] FIG. 2 shows a method 200 performed by the
self-describing artifact manager 160 and/or the execution
gatekeeper 162. This methodological implementation may
be performed in software, hardware, or a combination
thereof. For ease of understanding, the method is delineated
as separate steps steps should not be construed as necessarily
order dependent in their performance. Additionally, for
discussion purposes, the method 200 is described with
reference to FIG. 1.

[0096] At 210 of FIG. 2, the self-describing artifact man-
ager 160 facilitates persistence of manifests with their
associated artifacts. As shown in of FIG. 1, manifest 132 is
persisted in association with the systems artifact 130 or it is
stored at some derivable or known-location on the storage
device 120. Similarly, manifests 142 and 152 are stored in
association with application artifacts 140 and 150.

[0097] At 212, the self-describing artifact manager 160
updates the self-describing artifacts of a system in accor-
dance with the changes in the system’s content and/or
configuration. Such changes may be result of, for example,
installation of new content, a manual configuration change,
and automatic configuration change performed by the oper-
ating system. Before they are applied, updates may be
checked in the context of the collection of system manifests
to ensure that if applied they will result in a viable system.

[0098] At 214, the self-describing artifact manager 160
optimizes the use of artifacts for execution. The manager can
determine which load modules will be combined in pro-
cesses for an application. The manager can then combine
load modules into a smaller number of load modules, which
have been optimized together. Similarly, using the system



