US 2006/0123412 Al

manifest to determine which applications will be invoked
soon, the self-describing artifact manager can encourage the
start of some applications before they are actually invoked.

[0099] At 216, the execution gatekeeper 162 examines the
associated self-describing artifacts to determine whether to
allow execution of the associated application (or other
program) based upon the current conditions and the declara-
tive descriptions of the associated manifests. When such
determination is made, the gatekeeper may limit or prevent
execution of the associated application (or other program).

[0100] For example, local policy of a computer may
precisely describe which applications can and cannot be
invoked, as well as the manner in which they may be
invoked. If so, the gatekeeper will only allow invocation in
the specified manner.

[0101] At 218, the system verifier 164 audits the integrity
of the system against external modification. The audit is
based upon the manifests of the self-describing artifacts of
the system. For example, a load module’s manifest may
contain a signed digest of the contents of the one or more
associated load modules. The gatekeeper can periodically
check the contents of all load modules to see if they still
match their specified digests.

Methodological Implementation of Exemplary System Veri-
fication

[0102] FIG. 3 shows a method 300 performed by the
systems verifier 164. This methodological implementation
may be performed in software, hardware, or a combination
thereof. For ease of understanding, the method is delineated
as separate steps represented as independent blocks in FIG.
3; however, these separately delineated steps should not be
construed as necessarily order dependent in their perfor-
mance. Additionally, for discussion purposes, the method
300 is described with reference to FIG. 1.

[0103] At 310 of FIG. 3, the systems verifier 164 responds
to a triggering event. Examples of a triggering event
includes (by way of example and not limitation) receiving a
manual verification request, performance of action by
another program (e.g., installing software), and a schedule
time event. This triggering event may be identifiable and
associated with a particular type of desired verification.

[0104] At312, the system verifier 164 examines the mani-
fests of the self-describing artifacts to gather information
from those manifests.

[0105] At 314, the verifier performs a verification of the
online and active system of the computer 102. More par-
ticularly, it is a verification of the self-describing artifacts.
As it is possible, these verifications may be performed on an
offline “system image” as well.

[0106] The verifications performed by the verifier are
designed to promote the stability, integrity, robustness of the
system in its fully functioning condition. The following are
a list of example verifications that the may be performed by
the system verifier 164 (list provided by way of example not
limitation):

[0107] verifying that that all dependencies of installed
software in the computer 102 are met;

[0108] verifying that an operating system of the com-
puter 102 includes all device drivers necessary to run
on the hardware configuration of the computer 102;

Jun. &, 2006

[0109] verifying that code in the computer 102 has not
been altered either accidentally or maliciously;

[0110] verifying that an application is correctly installed
in the computer 102;

0111] verifying that a known faulty or malicious pro-
2 ty p
gram is not installed on the computer 102;

[0112] wverifying that an application and all of its con-
stituent components and dependencies exist on the
computer 102 before installation;

[0113] verifying that an application is installable on the
computer 102 before loading its components onto a
system,

[0114] verifying that installation of a new application or
system component will not conflict with existing appli-
cations or components;

[0115] verifying that an application or operating system
component can be removed without breaking depen-
dencies from other applications or components;

[0116] verifying that an application or operating system
conforms to a predefined local policy.

[0117] At 316, the verifier reports the results of the veri-
fication to whatever called it (e.g., the OS 112 and/or the
user).

System Inspection

[0118] This new architecture overcomes many of the inad-
equacies of conventional software-based computers. For
example, given an arbitrary offline “system image” of a
software-based computer using the new architecture, one
can, indeed, determine conclusively that the image contains
a functional OS or a specific functional application. This
cannot be done with a software-based computer using a
conventional architecture.

[0119] The manifest of each artifact is stored within (or
can be retrieved along with) a persistent “system image” of
a software-based computer’s content and configurations.
The artifacts are stored in such a manner that their associated
metadata (of their manifests) can be inspected (by, for
example, the system inspector 180) when the image is
offline. In addition, other contents of the image may be
inspected as well.

[0120] In doing so, the system inspector 180 may make
strong statements about the contents and the future behavior
of'the system. This is possible even if the metadata and other
parts of the system image are scattered across a distributed
store, such that they come together only when the system
boots and runs. By examining the static manifests of the
self-describing artifacts and proposed or anticipated
dynamic manifests of associated prototypes and abstrac-
tions, the system inspector 180 can verify a number of
properties of the software-based computer 102.

[0121] For example, the inspector can verify the classes of
properties supporting compositional verification. In other
words, the inspector can determine whether all of the
necessary elements of a component of the software-based
computer 102 exist on its persisted system image and that
the elements compose correctly.



