US 2006/0123412 Al

[0122] A property is compositionally verifiable if compo-
nents can be verified for the property individually, and when
composed, the system can be known to maintain the same
property without re-verifying the all of the components. For
example, in programming systems type safety is considered
compositionally verifiable if individual load modules can be
verified as type safe and when legally combined they
maintain type safety. In this case, the system inspector 180
can verify that each load is type safe and then verify that the
load modules are combined in a legal manner without
requiring complex verification across the entire system
whenever a new load module is added.

Methodological Implementation of Exemplary System
Inspection

[0123] FIG. 4 shows a method 400 performed by the
system inspector 180. This methodological implementation
may be performed in software, hardware, or a combination
thereof. For ease of understanding, the method is delineated
as separate steps represented as independent blocks in FIG.
4; however, these separately delineated steps should not be
construed as necessarily order dependent in their perfor-
mance. Additionally, for discussion purposes, the method
400 is described with reference to FIG. 1.

[0124] At 410 of FIG. 4, the system inspector 180 obtains
a copy of an offline “system image” of a software-based
computer, such as the computer 102. This action is illus-
trated in FIG. 1 by the large-headed arrow.

[0125] At 412, the system inspector 180 performs an
analysis of the offline system image to verify conclusively
that the computer 102 contains specific functional compo-
nents (such as the OS or applications). More particularly, the
inspector examines the self-describing artifacts to see if all
of the necessary components (described as such and refer-
enced by manifests of the self-describing artifacts) are
located and properly identified.

[0126] At 414, the inspector reports the results of this
analysis.

Abstractions

[0127] Operating systems provide abstractions to frame
computation and allow programmers to create software
more easily by focusing more completely on their domain of
expertise. An abstraction denotes a model of one or more
components that represents the essential characteristics of
those components that distinguish them from all other kinds
of components and thus provides crisply defined conceptual
boundaries.

[0128] Examples of existing operating system abstractions
include file system abstractions to control and manage
storage, 1/O abstractions to control /O devices, Graphical
User Interface (GUI) abstractions, process abstractions to
hold computation, and interprocess communication (IPC)
abstractions to enable communication between processes.

[0129] Without these basic abstractions, programmers
would be forced to devise their own ad hoc methods for
performing common tasks. Invariably such diverse ad hoc
methods lead to reduced programmer productivity, large
scale duplication of effort, and increased system errors.

[0130] In, at least, one implementation, the exemplary
self-describing artifact architecture creates new operating
system abstractions, which include:

Jun. &, 2006

[0131] a system prototype, which represents a “run-
nable” (e.g., executable on the computer 102) software
system including operating system and programs;

[0132] a system abstraction, which represents an active
or “running” system including the operating system and
programs;

[0133] an application prototype, which represents a
runnable application program;

[0134] an application abstraction, which represents an
instance of an active or “running” program; and

[0135] a process prototype, which represents a runnable
process.

[0136] FIG. 5 shows an example structure 500 of a
software-based computer capable of implementing this new
architecture. This includes the new abstractions and proto-
types introduced by this new architecture in the context of
conventional abstractions and prototypes. From top to bot-
tom of FIG. 5, the four tiers in this example structure 500
are:

[0137]

[0138] an system abstraction 512 (which includes the
operating system components (e.g., scheduler, IPC
manager, /O manager, security manager, garbage-
collection and memory manager, etc.), and any other
systems level components) and by inclusion all
applications;

[0139] systems prototypes 514 associated with at
least one system;

[0140] systems manifests 516 associated with at least
one system including the OS and applications.

[0141] 2. Application tier 520, which includes:

1. Systems tier 510, which includes:

[0142] One or more application abstractions 522;

[0143] application prototypes 524 associated with at
least one of the application abstractions;

[0144] application manifests 526 associated with at
least one application-based artifact.

[0145] 3. Process tier 530, which includes:
[0146] One or more process abstractions 532;

[0147] Process prototypes 534 associated with at
least one of the process abstractions;

[0148] process manifests 536 associated with at least
one process-based artifact.

[0149] 4. Load source tier 540, which includes load
source manifests 546 associated with at least one
load-source artifact (e.g., load module).

[0150] For completeness, the system model may also
include a system abstraction representing the entire running
software system. In practice, the operating system 512 itself
typically acts as the system abstraction.

[0151] Manifests are declarative description a software
component (e.g., process, application, or OS element).
When the manifests and the software components are per-
sisted in association with each other, then the components
are self-describing artifact.



