US 2006/0123412 Al

SELF-DESCRIBING ARTIFACTS AND
APPLICATION ABSTRACTIONS

TECHNICAL FIELD

[0001] This invention generally relates to a technology for
managing the software components of one or more computer
systems.

BACKGROUND

[0002] The reliable installation, configuration, mainte-
nance, and removal of components of a conventional soft-
ware-based computer have long been a difficult problem.
Examples of such components include the following: oper-
ating systems (OSs), application programs, device drivers,
application programming interfaces, and other systems pro-
grams. Examples of conventional software-based computers
include the typical general-purpose personal computers (PC)
running one of the many existing OSs.

[0003] A software-based computer is typically embodied
by the persistent contents and configuration of its secondary
computer-storage system (e.g., a “hard disk). The conven-
tional computer-embodying content and configuration is
merely a collection of bits accumulated over time and
without centralized oversight and coordination. Typically,
these accumulated bits are the result of a series of individual
ad hoc events throughout the lifetime of the computer.
Examples of changes include, for example, installation of a
program, change of a configuration setting in a registry key,
deletion of a file, or installation of a software patch.

[0004] When a software-based computer boots, it merely
executes whatever the computer finds on hard disk. Since the
correctness of the contents on the computer’s disk ultimately
depends on the correctness of each of these ad hoc events
over the lifetime of the computer, the contents and configu-
ration of the computer may readily become corrupted,
damaged, skewed, obsolete, or simply incorrect.

[0005] The correctness of the computer’s contents and
configuration is further threatened by other externally initi-
ated ad hoc event involving a malicious attack by a virus, a
worm, spyware, and the like. Unbeknownst to the user of the
software-based computer, these malicious attacks alter the
computer’s contents and configuration, most likely in a
manner that is inconsistent with the user’s desires.

[0006] Various products and services (e.g., so-called “anti-
virus” and “disk cleanup” utilities) are available for detect-
ing and correcting a computer’s contents and configuration
that have become corrupted, damaged, skewed, and/or
attacked. While clearly well intentioned, these products and
services may just compound the problem by introducing yet
another ad hoc event to the resulting accumulation of bits on
the computer’s disk.

[0007] Conventional software-based computers are inher-
ently brittle. One reason is because the computer’s collec-
tion of accumulated bits has incomplete descriptions that
are, at best, anecdotal. These incomplete descriptions are
merely the results of the same series of ad hoc events and do
not systematically describe the bits on the disk or the series
of events that produced them. They are also unmatched with
any specification, total or partial, of what the system con-
figuration should be, or of any way of checking the state
against the specification.

Jun. &, 2006

[0008] The following fact illustrates the inadequacies of
conventional software-based computers: Given an arbitrary
offline “system image,” one cannot in general determine
conclusively that the system image contains a functional OS
or a specific functional application. A system image is a
bit-for-bit copy of the contents and configuration informa-
tion typically persisted on a hard disk of a conventional
software-based computer. Those contents and configuration,
as discussed above, embody the computer.

[0009] Given a system image, one may check if specific
files exist on the image. This check may be done with
empirical knowledge of which specific files are installed
with a particular OS or particular application. However, such
empirical evidence does not tell one whether all of the
necessary components (of the particular OS or particular
application) are installed. Such empirical evidence does not
tell one whether there are any conflicting components are
installed. Further, such empirical evidence does not tell one
whether all of the components (of the particular OS or
particular application) are configured correctly to produce a
functional computer. Such checks are necessary but not
sufficient.

[0010] Even if one empirically determines the existence of
all of the specific files necessary for a particular OS or
application to function, that fact is not sufficient for one to
know that particular OS or application on the image will
function correctly. Again, these checks are necessary but not
sufficient.

[0011] Indeed, the only effective conventional recourse is
to abandon the offline examination of the image and imple-
ment an online examination. One may boot a computer using
the system image and observe the results. This conventional
approach is often impractical, unsatisfactory, and unsafe.
Clearly, this approach is not scalable.

[0012] Even using the conventional approach of an online
examination, it is often difficult to identify, without doubt,
which particular applications and/or OS components are
installed or even currently running. Often all that one has
determined is that an application or component having a
specific name exists on the computer. This determination
relies on the software developers avoiding the use of mis-
leading names. Such misleading names may occur inadvert-
ently or purposefully.

[0013] For example, while existing OSs available in the
marketplace (like Windows® XP or Linux) might show a list
of running processes, by name of the file used to start the
process, the name of each running process is only a “hint”
as to true identity of the process. For example, an innocu-
ously named process might have been hijacked by a virus
and subverted to another potentially malevolent task. Alter-
natively, a properly named process may have been corrupted
by, for example, an administrator installing a seemingly
unrelated application.

[0014] With conventional software-based computers,
there is no descriptive structural link between low-level
software abstractions and high-level software architecture of
the conventional software-based computers that descrip-
tively and necessarily links low-level and high-level soft-
ware abstractions.

[0015] Low-level software abstractions include, for
example, particular files (e.g., load modules) on a disk and



