US 2006/0031815 Al

within this block of bits describe the many possible differ-
ences that exist between diverse specific types of the gen-
eral/generic Power Supply type. Sample values for a hypo-
thetical power supply were shown in Table 1.

[0068] A Power Supply device might have a notion of
power control pulse widths (an unlikely notion in other sorts
of peripherals). Power On/Off” control is a concept utterly
foreign, and inapplicable, to most other types of (peripheral)
devices. For instance, sensors (in general) or temperature
sensors (in particular) do not typically have any notion of
“Power On/Off” control. Neither power-on/off behaviors,
nor the associated electrical signal pulse widths, apply to
(peripheral) devices in general. In addition, specific power
supply sub-types require different power on/off electrical
pulse widths.

[0069] Power Supply instances can also require different
specific wiring choices for the interface to any specific
Power Supply. This will depend upon how the Power Supply
instance in question is situated within some given system/
product. How the system/product is laid out will dictate
which host wire/pin must be used for any such Power Supply
on/off signal (of whatever width or duration). Which wire
must be used for the signal (pulse) is a separate, physical-
level matter and is described in the physical scheme.

Logical Descriptions Implement a New Type System

[0070] In many object-oriented systems, there would be a
class to represent each such specific type of Power Supply.
Each such class instance could inherit a Power on/off pulse
width member (property/attribute) but each class would
need different method logic to handle the diverse wiring/
interfaces that might be used for any given Power Supply.
The present invention makes this unnecessary. Without the
present invention, one might (often) need a fast growing
number of distinct Power Supply types/classes.

[0071] Most other software systems (e.g., object oriented
programming languages) generalize based on class/type
definitions. This type-based generalization is sensitive to
both class member types and class method signatures. A
class method signature can include the method’s return
value type, the number of method arguments, and the types
of each method argument. Using the present invention,
declaratively tailored prototypes implement the described
facets. Techniques like the block of bits make all facet
signatures interchangeable which eliminates the need for
most sub-typing.

[0072] 1t is only the interpretation of that block of bits that
is sub-type specific (i.e., each sub-type promulgates its own
block-of-bits format). This allows for consistent interfaces
that work with (and in spite of) different numbers of argu-
ments and different types of arguments. Accordingly, pro-
totypes schemes according to embodiments of the present
invention can compose things like a (peripheral) devices
schema. This provides a far more flexible sort of processing/
programming generalization mechanism.

[0073] This more flexible sort of processing/programming
generalization permits creation of a fixed software/firmware
image that can conditionally incorporate simultaneous sup-
port for any number of specific peripheral devices. No new
device-specific code needs to be loaded (or linked). Systems
using the present invention do not require any sort of reboot,
restart or even re-initialization. Even run-time adaptation of
the fixed part (to a dynamic hardware environment) becomes
quite practical. A few simple changes to the data declared (or
added) to the schema (of Peripheral Devices in general) will

Feb. 9, 2006

suffice. From another perspective, the collection of descrip-
tion scheme instances (i.e., the schema according to embodi-
ments of the present invention) makes peripheral device
support fully data driven.

[0074] In terms of the running example, a power on/off
pulse width of 100 milliseconds might be a common/default
value. A longer, or shorter, pulse width might be required by
certain specific types of power supplies. The present inven-
tion can handle all such variations.

[0075] According to embodiments of the present inven-
tion, a single, fixed software/firmware image can include a
huge variety of very specific type implementations (by
brand, make, model, etc.). Some of the fixed logic can
manipulate instances of something quite general—like
(Peripheral) Devices. Some can manipulate instances of
something a bit less general—like Power Supply Devices,
while yet other logic in our fixed images can deal with very
specific types—Ilike, e.g., a very specific model/device (e.g.,
“ACME Power Supply model 12A in a FOO model 2500
server computer”).

[0076] Due to the super-generalized nature of the sche-
mata (e.g., Power Supply), the present invention offers a
unique level of processing/program extensibility. New types
can be added both more easily and more powerfully. The
schema conventions (i.e., interface contracts) are much less
restrictive. Since the individual prototype schemes are more
general, new types can more often both conform and inter-
operate with existing logic. Existing logic is sensitive only
to these much looser prototype scheme interfaces (as pro-
mulgated by the more general scheme shapes). The present
invention provides an unprecedented level of extensibility
(i.e., customizability).

Logical Description Artifacts: the “Logical Description
Table”

[0077] Often, something like a logical description table
has a fixed size entry for each instance of any scheme type
(e.g., for Power Supply, etc.). Alogical description instance/
entry represents a scheme instance (e.g., Peripheral Device).
The fixed software/firmware image uses the facet interfaces
for each listed schema instance (e.g., for each Power Supply
scheme instance, etc.). There can be very material (and
almost arbitrary) differences between instances of any given
scheme type (like Power Supply). Accordingly, much of the
described facet machinery is indirect and opaque. Different
specific power supply instances can be associated with
distinct interface facet sets. In ordinary object oriented
programming systems, such different instances would
require different Power Supply sub-types. With the proto-
type based description conventions according to embodi-
ments of the present invention, specific facet schemes can
bind to completely different code. In effect, they can bind to
sub-type specific implementation logic without requiring
any sub-types. The prototype scheme according to embodi-
ments of the present invention is the one and only common
thread.

[0078] This common thread is kept flexible with mecha-
nisms like the block of bits. All facet signatures within a
schema share some arbitrarily unique block of bits. The
number of bits is fixed for the entire schema (and thus for
each scheme within the schema). Meanwhile, the use/inter-
pretation of these reserved bits is scheme specific.

[0079] The interpretation of these bits depends upon the
kind of prototype scheme in question. Implementers choose
when to declare/define new prototype facet schemes (i.e.,



