US 2006/0031815 Al

details found in the physical description. That portion will
hide the differences between non-volatile storage on-chip
and non-volatile storage off-chip. The myriad differences
found in off-chip non-volatile storage hardware (i.e., so-
called “flash” parts) will also be declaratively described, as
was the case pattern illustrated for the Power Supply
example.

[0099] Most of the embedded firmware/software part logic
depends only on the prototype scheme facets, and not on
either the logical description details/values or the physical
description. Likewise, most of the embedded firmware/
software part logic does not depend on any of the physical
description details/values. Only the prototype scheme facets
are visible. Almost all of the embedded software/firmware
can treat the block of bits as opaque. Only a focused portion
of lower-level implementation logic ultimately switches to
the appropriate logic (based on the logical and/or physical
description details in question).

Portability Across Host Hardware Environments via Decla-
rations

[0100] The declarative description of the embedded firm-
ware/software host hardware environment provides a novel
degree of portability. Accordingly, this invention achieves a
unique degree of portability without requiring any change to
the firmware/software image (presuming a micro-controller
core with instruction set similarities that are expected to
appear across a family/line of ASICs). FIG. 4 illustrates one
possible use case that leverages fixed firmware/software
image portability according to embodiments of the present
invention. As shown in FIG. 4, a single, possibly fixed-size,
embedded firmware/software part image can be customized
for a large variety of products. Initially the fixed firmware/
software image is created (“Design Product”, “Install” and
“Consult” steps). The Consult step is used to review and
consult firmware/software programming guides (API docu-
ments and the like). When these steps are complete, the
system is implemented, followed by the “Compile, Link,
Test” steps (repeated as needed). Typically, this is a cycle
that is repeated as many times as necessary to produce a
desired executable image.

[0101] The initial steps are preferably done only once. The
“add” (or edit) descriptions step is done once for each target
product. Embodiments of the present invention allows for
the automation of this step which results in true, off-the-shelf
reuse of a firmware/software part. The last depicted step
involves a load of the part into one or more target products.
Essentially, this step is the assembly of a final, finished
product which includes the re-usable firmware/software
part.

Example

[0102] The following example depicts operation of
aspects of the present invention for a given microcontroller
core. As shown above, at a physical level, there are abstrac-
tions (e.g., general purpose input/output (GPIO) pins) found
on any given ASIC (these are the physical pins on the
underside of the ASIC chip). On any particular host chip,
one (or more) of these pins might be directly available for a
logical GPIO signal. Sometimes there are not enough pins
for all the various needs (of the embedded firmware/soft-
ware image). One solution is to limit the number of logical
GPIO signal descriptions (and thus reduce the number of

Feb. 9, 2006

paired physical GPIO pin descriptions). This approach
causes the fixed image to sacrifice features and functions in
order to conform to the limitations of the host ASIC. Simple
changes to the appropriate descriptions suffice.

[0103] Alternatively, some product designers (i.e., board
designers) may employ an off-ASIC pin expander mecha-
nism—a distinet chip/part (a second, complementary chip).
Along with the primary host chip, this expander chip
becomes an integral part of the operational host hardware
environment. This complication is introduced to this
example to illustrate how this invention simply abstracts
away such diverse host hardware environment details. In
addition, this invention permits this to be done without
requiring any change to a given firmware/software image.

[0104] Returning to the running Power Supply example,
as illustrated above (in Table 1 and Table 2), the Power
Supply uses a certain host ASIC pins for the implementation
of various logical GPIO signals. These signals are used to
implement one logical facet—i.e., the “Power On” behavior.
Other GPIO signals (and corresponding GPIO pins) are used
to implement other logical behavior facets.

[0105] We described above how the Power Supply scheme
mapped logical GPIO signals to physical GPIO pins (on
some specific host ASIC). We now describe how a logical
GPIO signal can map into a logical bus. A collection of
GPIO signals (and their corresponding GPIO pins) can be
used together to affect a “bit-banged” bus. Some pin
expander chips work this way. For instance, four GPIO
signals might encode up to sixteen (2%) different signal
combinations. In these cases, the GPIOBusFlag listed in
Table 2 is true, and so the GPIO bus related attributes of
Table 2 are not moot.

[0106] Thus can be seen some of descriptive power of the
use of the block of bits. It can be used to describe a series
of simple GPIO interfaces. It can be used to describe which
physical ASIC pins are used (for various GPIO signals) with
the Power Supply in question. In can be used to describe
how multiple GPIO signals are used together to form a crude
bit-banged bus interface (to either a Power Supply or to an
off-chip pin expander which is itself wired to a power

supply).

[0107] The Power Supply prototype scheme comes with a
generic, default implementation. This implementation logic
drives off the contents of the block of bits. If the default
behaviors are inappropriate for some specific Power Supply,
each behavioral facet can be replaced with alternate behav-
iors (which are available for as-needed use with the Power
Supply scheme). Simple edits to the prototype scheme can
replace any of the default prototype behaviors.

[0108] Only a few, isolated, focused bits of embedded
software/firmware logic need to know anything about this
particular block of bits interpretation. All of the logic
associated with the Power Supply scheme form a natural
module. This module contains the only logic that should
have any knowledge of how the block of bits should be
interpreted (for a Power Supply scheme instance). While
some applications of this invention might want to dynami-
cally load modules, a given range of desired applicability
can map to a certain, fixed set of modules. Such modules can
be pre-loaded into a fixed-size executable image. Once this
is done, declarative changes to the description block are all



