US 2006/0031815 Al

that is needed (see FIG. 3). This sort of fixed-size executable
image becomes a re-usable software/firmware part.

[0109] FIG. 3 depicts a deployment architecture accord-
ing to embodiments of the present invention. This diagram
depicts an application of this invention to an embedded
firmware part. This particular firmware part features a fixed-
size firmware image divided into three (potentially fixed-
sized) parts: boot block, description block and operational
block.

[0110] As shown in FIG. 3, a deployment architecture
according to embodiments of the present invention includes
a configuration utility, a host and an optional description
repository. The configuration utility is used to describe host
ASICs and peripheral devices (e.g., for some entire product
line), to configure a part after product assembly. (Note that
the part is configured, not customized). The host (ASIC, etc.)
includes a description block and a boot (image) block. The
description block contains logical a physical descriptions
and describes both the host ASIC and peripheral devices. It
can pre-allocate a fixed amount of storage (to form a
so-called, fixed-image firmware/software “part”) or it can
dynamically allocate storage from a pool (which may or may
not include off-chip/secondary storage). The host declares
schemata types known (self-describing). The boot block is a
fixed image which calls described/parameterized initializers
(especially for each peripheral device present) and mediates
and installs firmware and software updates, as needed. An
operational block is a fixed image parameterized via descrip-
tions.

[0111] A dynamic discovery monitor (DDM) can be used
to enable collaboration with a centralized description reposi-
tory. In some embodiments of the present invention, the
DDM continuously detects peripherals, activates or uploads
descriptions and/or monitors peripheral presence.

[0112] An optional description repository describes the
universe of (known/supported) host ASICs; the universe of
(known/supported) peripheral devices and then supplies
needed (physical/logical) descriptions on-demand (based,
e.g., on discovery of new devices by the DDM).

Host (ASIC) Descriptions Complement Peripheral Descrip-
tions

[0113] A collection/container/table of logical descriptions
is used when describing a host/ASIC processing support
platform (for some software/firmware part). Each descrip-
tion (block entry) corresponds to an instance of some
corresponding host ASICs circuit/sub-system. A similar col-
lection/container/table of logical descriptions usually exists
for each peripheral device. Together, these logical (and
corresponding descriptions) comprise the description block.
(see FIG. 3).

[0114] Generally, the distinction between what is an ASIC
circuit/component-system and what is a peripheral device/
component-system is not always precise. This makes it quite
natural to unify the nature of these descriptions. This inven-
tion applies equally well to both host and peripheral support
needs.

[0115] Again, the logical and physical host descriptions
are conceptually distinct. The logical host aspect/component
descriptions supply values that eventually map to some
named/identified physical description. As with peripheral

Feb. 9, 2006

descriptions, any one-to-one logical-to-physical identity
mappings make it possible to interleave the two descrip-
tions. As before, this is typically done as an implementation
convenience. Prototype schemata may be created for ASIC
circuits/component-systems like a random number genera-
tor, a UART port, non-volatile storage, tachometer circuits,
pulse width modulator circuits and the like. A collection of
such prototype schemes comprises a host schema which,
when combined with a peripheral schema, form a (master)
system schema.

[0116] Note that host (ASIC) and peripheral (device)
descriptions can be mix-and-matched. For example, a palette
of individual peripheral schemata can define a peripheral
schema for some (particular vendors) product line. As new
models enter this product line, they might regularly re-use
the same peripheral schema. They might or might not re-use
the same host schema. The host schema can be swapped
in/out quite independently of the peripheral schema.

[0117] Those skilled in the art will immediately realize
that many other sorts of useful scheme groupings can be
affected. Other than for size constraints, a fixed-size execut-
able image, according to embodiments of the present inven-
tion, may support all (or a very large number) of individual
prototype schemes (for both various hosts and various
peripherals). As a practical (and economic matter), carrying
around unused schemes is hard to justify (past a certain
degree). Furthermore, the executable image itself will have
host instruction set dependencies (i.e., it will depend on the
micro-controller processing core—e.g., H8, ARM, etc.).

[0118] This invention provides for a system wherein there
is rarely any requirement for any embedded firmware/
software part changes (especially across a select product
line). The host hardware can be designed, and then desired
software/firmware part(s) can be layered on. Nothing needs
to be re-compiled, nothing needs to be re-initialized, and no
run-time changes to the embedded firmware/software image
are required (no overlay changes, no dynamic linking, no
dynamic loading, etc.). A single, fixed software/firmware
image can be used across a range of host hardware and
across a range of peripheral devices. The product line
designer matches the range of applicability of his embedded
firmware/software part to his product line plans. This dra-
matically speeds up integration of the part and dramatically
reduces time-to-market for new product model develop-
ment, while dramatically reducing quality assurance costs.
In addition, this makes it possible to support many/most
hardware changes in the field (through small descriptive
declarations). In fact, adaptation to hardware changes can be
fully automated (via a dynamic discovery monitor—see
FIG. 3).

Dynamic Hardware Environments

[0119] In practice, a host hardware environment rarely
changes dynamically (at run-time). Once a product is
shipped, the host hardware environment is typically fixed. If
the software/firmware host is an ASIC (chip), it might even
be fixedly connected to a printed circuit board (PCB).
Although rare, an ASIC can change. For example, comple-
mentary support chips might be populated into waiting
sockets. The host ASIC chip itself can be in a socket. This
means that it too might be subject to field upgrades. Alter-
natively, the host might be on a card (i.e., a daughter card,
mezzanine card, bus card, etc.). These too can by dynami-
cally added, removed, swapped, etc.



