US 2006/0031815 Al

are interpreted as different numbers and/or different types of
parameters. The precise manner in which they are inter-
preted depends upon the logical scheme in question. Some-
times a portion of these opaque bits are interpreted based on
the specific physical description of the scheme in question.
FIG. 2 illustrates an example of the manner in which these
block of bits can be supported according to embodiments of
the present invention. Those skilled in the art will realize that
here are many possible ways to implement this invention.
Different programming language run-time facilities will
tend to favor different implementations. FIG. 2 illustrates
one way to implement the common prototypes within a
(possibly fixed-size) operational block, using the C pro-
gramming language.

[0058] Although some microprocessors directly support
64-bit machine words, the exact number of opaque bits used
is arbitrary. This depends upon the system scheme to which
the invention is applied. The approach works equally well
with any number of bits. As needs arise, the number of
opaque bits passed (to all described facets in the schema
used for any particular embedded software/firmware part)
can be expanded. Those skilled in the art will realize that the
block of bits is preferably not typed.

[0059] Regardless of the number of bits used, for preferred
embodiments of the present invention, the number should be
a constant for a given part. In some less preferred embodi-
ments of the present invention, varying number of bits may
be used, although this will add to the system’s complexity.
With a fixed number of opaque bits in the block of bits, each
and every behavior facet can always take a single, standard,
block-of-bits argument. This is a unique mechanism, and
method, for implementing a behavioral facet (or slot). In
part, this distinguishes a descriptive facet from an ordinary
function, an ordinary object method, etc.

[0060] Returning to the power supply example, the fol-
lowing table (Table 1) depicts an example mapping the
described Power Supply (logical) concept into the block of
(opaque) bits.

TABLE 1

Logical Power Supply Description (Block of bits only)

Section/Bit
Offset # bits Purpose Sample Value
1 16 Packed Bit Field Ox0404
15:8 8 Logical Power On (GPIO) Signal — 0x04
7:0 8 Logical Power Off (GPIO) Signal 0x04
2 16 Packed Bit Field 0x0605
15:8 8 Logical Power Status (GPIO) 0x06
Signal
7:0 8 Logical Power Reset (GPIO) 0x05
Signal
3 32 Packed Bit Field 0x053205FF
31:24 8 Power On Signal Pulse Width 0x05
23:16 8 Power Off Signal Pulse Width 0x32
15:8 8 Power Reset Pulse Width 0x05
77 1 Use IRQ instead of signal for 1b
power status
6:6 1 External (true) or Internal (false) 1b
IRQ type
52 1 Interrupt Request (IRQ) number 0x4
1:0 2 Trigger edges (0 = front, 1 = back, 106
2 = both)

Feb. 9, 2006

Flexible Description Facets

[0061] To optimize existing implementations, a number of
techniques may be used to compress varying numbers, and
varying types, of arguments/parameters into a sequence of
bit fields packed (tightly/efficiently) into the block of bits. To
completely standardize the unique interface facet signatures,
some embodiments of the present invention adopt a certain
universal enumeration of interface facet that returns values
(referred to as “status” values). In addition, systems accord-
ing to embodiments of the present invention preferably use
a conformant function to implement both state/attribute/
property access facets (e.g., so-called “getters” and “set-
ters”) and behavioral facets.

[0062] Thus far, a logical description approach (via a
specific scheme conforming to some specific schema con-
ventions) has been described. This supports instances of
various prototypes. Each such instance can represent one
peripheral hardware device.

[0063] While this novel mechanism/method can be
applied in any number of ways, the power supply example
shows how it supports the representation of a very large
number of Power Supply types. The logical interfaces of the
Power Supply type have been parameterized in a single,
uniform and consistent way, e.g., using an opaque block of
bits. The present invention makes it possible for a fixed
software/firmware image to use any interface facet that is
associated with any scheme instance. Diverse schemes can
represent a very wide range of peripheral devices (within a
peripheral device schema). These mechanisms, and the
corresponding methods, provide a constant and a consistent
way to bind an implementation to the described facets.

Declarative Description Facet Signatures

[0064] Up to now, the block of bits have been described as
opaque. The power supply example is now used to illustrate
how other mechanisms, and methods, in the present inven-
tion support real-world power supply idiosyncrasies.

[0065] The block-of-bits argument/parameter is associated
with the specific set of facets that meet the stated/implied
requirements/intentions of some given logical/physical
scheme (for Power Supply). Focus first on the logical facets
required by the power supply scheme. This logical descrip-
tion outlines the set of Power supply facets/interfaces that
power supplies must somehow support. It is the associated
Power Supply scheme that determines how the block of bits
will be interpreted. Once it is known that we are dealing with
an instance of a Power Supply description, the block of bits
can be interpreted. The block of bits is not opaque to logic
that knows the Power Supply context (for some given block
of bits instance).

[0066] The interpretation of various, nested sections of the
block of bits can build up across the generalization/special-
ization type hierarchy. To keep the example simple, assume
that each specialized (leaf) type (like Power Supply) can
treat the entire block of bits as its own, as is often the case.
For instance, the even more general notion of a peripheral
(kind of type) might not impose any additional conventions
upon the block of bits interpretation.

[0067] In the example, the Power Supply type declares
and imposes its own special block of bits interpretation (as
was detailed in Table 1 (above)). The actual values used

