US 2006/0161516 Al

location and any available data sharing transports (e.g.,
peer-to-peer networks, servers) are automatically identified.
Thus, the user may access a shared object and collaborate
with other authorized users through different mechanisms.

[0031] Each shared object is associated with a manifest
file. The manifest file identifies the locations where other
versions and instances of the shared object are stored within
the system. In one embodiment, the manifest file is an
extensible markup language (XML) file. In another embodi-
ment, the manifest file identifies multiple shared objects. In
another embodiment, the manifest file may be associated
with any object that may be shared between clients. For
example, the manifest file may be associated with an entire
shared object or any portion of the shared object (e.g., a
content container, a section, a page, an outline, etc.).

[0032] The manifest file may be stored anywhere within
the system. As shown in the figure, manifest file 254 is
associated with shared object 252. Both shared object 252
and manifest file 254 are stored on web server 250. In
another embodiment, the manifest file is stored in the shared
object. In yet another embodiment, the manifest file is stored
in an active directory. In still yet another embodiment, the
manifest file is stored in multiple locations within the
system. The manifest file is stored in a location identified by
a unique location identifier. The unique location identifier
may identify a file server, a shared area of a server, a web
server, or a peer group.

[0033] The shared object may be accessed locally from a
cache, through a server, or through a peer-to-peer network.
The client retrieves the manifest file from the location
identified by the unique location identifier in the correspond-
ing shared object. In one embodiment, the client may store
the manifest file locally for future reference. The manifest
file indicates the location of any other versions and instances
of the shared object within the system (e.g., in a substore or
a peer group). If another version/instance of the shared
object is stored in a peer group, the manifest file may include
the corresponding peer group identifier.

[0034] In one embodiment, client 220 accesses shared
object 252 on web server 250. Client 220 is automatically
connected to other clients that are also accessing shared
object 252 (e.g., the peer group). Client 220 retrieves
manifest file 254 associated with shared object 252. Mani-
fest file 254 identifies the locations of different versions and
instances of shared object 252. Thus, client 220 may estab-
lish a peer-to-peer network with any other client in the peer
group when any client in the peer group accesses a version/
instance of shared object 252 identified by manifest file 254.
Client 220 may then disconnect from web server 250 and
continue to access shared object 252 on the peer-to-peer
network.

[0035] In another embodiment, client 210 may access
shared object 264 from peer-to-peer network 260. Client 210
retrieves manifest file 266 associated with shared object 264.
Client 210 may connect to a server and determine which
clients are also connected to the server. The connected
clients may be accessed through the server when peer-to-
peer network 260 is not available. Shared object 264 (or
252) and associated manifest file 264 (or 254) allow client
210 (or client 220) to transition automatically and seam-
lessly between asynchronous and synchronous communica-
tion modes.

Jul. 20, 2006

[0036] Users are not blocked from accessing and revising
a shared object when another user has access to the shared
object. Any authorized users may simultaneously revise the
shared object. In one embodiment, a brief instance of
blocking may occur to ensure the integrity of the revision
transaction. For example, a user may extensively revise the
shared document while disconnected from the server. When
the user reconnects to the server, other clients may be briefly
blocked from accessing the shared object until all of the
user’s revision are implemented in the shared object.

[0037] FIG. 3 illustrates a hierarchical graph of linked
nodes that indicate different portions of a shared object. In
one embodiment, the shared object is a notebook that is
shared among several users. Notebook node 300 symbolizes
the entire shared object. Folder node 310 is included within
notebook node 300. Section node 320 is included within
folder node 310. Page nodes 330, 335 are included within
section node 310. Table node 340, ink node 342, outline
node 344, and image node 346 are included within page
node 330. Outline element node 350 is included within
outline node 344. Text node 360 is included within outline
element node 350. Different nodes may be grouped together
in a content container. For example, outline node 344,
outline element node 350, and text node 360 may be grouped
together as content container R0. Content container RO is
assigned a GUID (e.g., GUID-0). The GUID uniquely
identifies content container R0.

[0038] A content container includes shared object content
(e.g., a word, a sentence, a paragraph, a page, a table, a
picture, handwriting, a uniform resource locator, or any
combination of data included in the shared object). Content
containers provide a dimension for object content that is
grouped together. For example, a content container may
correspond to a line, a paragraph, a page, or specific page
elements (e.g., only the tables on a particular page).

[0039] The shared object stores an initial version of the
graph. Specific operations may then be performed on indi-
vidual content containers. For example, a user may revise
the data of a content container. The revision to the shared
object may be identified as a state of the content container.
The shared object stores the revised content containers of the
graph. A current state of the content container is compared
to a previous state using GUIDs and time stamps such that
a determination may be made whether the content container
has been revised.

[0040] For example, two different users may each access
the shared document and modify content container R0. One
user may revise content container R0 by deleting text node
360 (as shown in revision R1). Revision R1 is stored in the
shared object. Revision R1 is assigned a GUID (e.g., GUID-
1) to uniquely identify the revised container and a timestamp
that identifies the time and date when revision R1 is written
to the shared object. Another user may revise content
container R0 by adding text node 380 to outline element
node 350 (as shown in revision R2). Revision R2 is stored
in the shared object. Revision R2 is assigned a time stamp
and a GUID (e.g., GUID-2) to uniquely identify the revised
content container.

[0041] Different users may revise a shared object at dif-
ferent times such that multiple versions of the shared object
may coexist. However, there is only one latest version of the
shared object. In one embodiment, the latest version of the



