US 2006/0161516 Al

than the limit that can be handled by client 500. If the size
of the revision file is greater than the limit, the file may be
divided into smaller files that are less than the limit. Alter-
natively, the size of the revision file may be reduced by
deleting previous requests. The smaller files are then trans-
ferred from client 540 to client 500 through server 530.

[0061] Multiple requests for revision data may be waiting
on a server. In one embodiment, the requests may be made
from different clients (e.g., clients 500, 550). Each request-
ing client may be associated with a different file size limit.
For example, client 500 is limited to files less than 2
megabytes and client 550 may handle files up to 20 mega-
bytes. Therefore, both requests cannot be satisfied through
one transfer transaction when the revision file is greater than
2 megabytes. In one embodiment, a priority bit is associated
with each requesting client to establish the order in which
the requests are satisfied.

[0062] The requests are satisfied by synchronizing the
revision file with clients 500, 550. The revision file may be
synchronized with clients 500, 550 in one transaction or
through a series of multiple transactions depending on the
size of the revision file. Each client 500, 550 determines that
the request is satisfied when the entire revision file is
synchronized. Client 540 may purge the requested data
because the requests are satisfied. Client 540 may later poll
server 530 to determine if any additional requests are
waiting to be satisfied.

[0063] FIG. 6 illustrates an operational flow diagram
illustrating a process for synchronizing multiple user revi-
sions to a shared object. The process begins at a start block
where many users are authorized to access and revise a
shared object simultaneously (i.e., the peer group). The
object may be any entity capable of being shared such as a
file. The peer group may be identified by a peer group
identifier. Different versions of the shared object are iden-
tified by corresponding GUIDs and time stamps. The time
stamp identifies the time when the shared object was last
synchronized with a revision.

[0064] Moving to block 600, a user revises the shared
object. The shared object may be revised on a server, in a
local cache, or on a peer-to-peer network. In one embodi-
ment, the revision is stored as a revision file. Proceeding to
block 610, the revision is associated with a GUID and a time
stamp. The time stamp identifies the time when the user
revised the shared object.

[0065] Advancing to block 620, the latest version of the
shared object is located. The latest version of the shared
object is the version that includes the most recent revisions
that are synchronized with the shared object and made
available to other authorized users. The latest version of the
shared object may be determined from the time stamps and
GUIDs associated with different versions of the shared
object.

[0066] Transitioning to decision block 630, a determina-
tion is made whether any conflicting revisions exist. Revi-
sions may conflict when different users revise the same
content container. The revision cannot be synchronized with
the shared object if conflicting revisions exist. If conflicting
revisions exist, processing continues at block 640 where the
conflicting revisions are reconciled and merged (as dis-
cussed with reference to FIG. 7). If no conflicting revisions

Jul. 20, 2006

exist, processing continues at block 650 where the revision
is synchronized with the shared object such that other users
may view the revision. Processing then terminates at an end
block.

[0067] FIG. 7 illustrates an operational flow diagram
illustrating a process for reconciling and merging conflicting
multiple user revisions to a shared object. The process
begins at a start block where more than one user has revised
the same content container in a shared object. A conflict
results when one of the revised content containers is syn-
chronized with the shared object such that any other revi-
sions to the content container cannot be synchronized.

[0068] Moving to block 700, the conflicting revision is
displayed on a conflict page. The conflict page resembles the
corresponding master page except that the conflicting revi-
sion is highlighted and displayed in place of the synchro-
nized revision.

[0069] Proceeding to block 710, a conflict indicator is
displayed on the master page of the shared object. The
conflict indicator may be a drop down menu, a tab, or any
other mechanism that informs a user that a conflict page is
available for the master page. The conflict indicator for a
conflict page associated with a particular user may be
distinct from the conflict indicator for conflict pages asso-
ciated with other users such that a current user may quickly
identify the conflict pages generated by the current user.

[0070] Advancing to block 720, the conflict page is dis-
played alongside the master page when the conflict indicator
is selected. The user is presented with both the synchronized
state of the master page and the corresponding conflict page.

[0071] Transitioning to block 730, the user reconciles and
merges the conflicting revisions into the master page. In one
embodiment, the user may select the content container such
that the content container is merged with the master page. In
another embodiment, the user may directly implement revi-
sions onto the master page. In yet another embodiment, the
user may identify conflicting revisions as irrelevant.

[0072] Continuing to block 740, conflicting revisions that
are identified as irrelevant are purged. In one embodiment,
conflicting revisions may be identified as irrelevant by a
user. In another embodiment, conflicting revisions may be
automatically identified as irrelevant. For example, a user
may have synchronized several revisions with the master
version of the shared object located on a server while
ignoring any corresponding conflict pages. The older con-
flict pages that the user did not reconcile are identified as
irrelevant after a predetermined time period has elapsed.
Processing then terminates at an end block.

[0073] FIG. 8 illustrates an operational flow diagram
illustrating a process for synchronizing multiple user revi-
sions to a shared object. The process begins at a start block
where different versions of shared object are stored in
different locations throughout a system. Moving to block
800, the shared object is downloaded from a store to a client.

[0074] Proceeding to decision block 810, a determination
is made whether the shared object is the current version of
the shared object. If the shared object is the current version
of the shared object, processing terminates at an end block.
If the shared object is not the current version of the shared
object, processing continues at block 820. The shared object



