US 2002/0100017 A1l

CONFIGURATIONS FOR BINDING SOFTWARE
ASSEMBLIES TO APPLICATION PROGRAMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application claims priority to U.S.
Provisional Patent Application Serial No. 60/199,227, filed
Apr. 24, 2000, and is also related to copending United States
Patent Application entitled “Isolating Assembly Versions for
Binding to Application Programs” filed concurrently here-
with.

FIELD OF THE INVENTION

[0002] The present invention is generally directed to com-
puter systems, and more particularly to executable computer
code such as application programs that utilize shared assem-
blies.

BACKGROUND OF THE INVENTION

[0003] At one time, computer applications were mono-
lithic blocks of executable code and data, although some of
their data such as variable settings could be maintained in
separate files. This made tasks like moving or replacing the
application simple. In contrast, contemporary computer
applications and other executable code (such as an operating
system component) bind to and make use of shared com-
ponents, wherein in general a component is a self-contained
software entity, offering a set of functions that can be used
by a variety of applications. Such components include
dynamic link libraries (DLLs) and objects such as OLE
(Object Linking and Embedding) components and COM
(Component Object Model) components, including
ActiveX® controls. In turn, some of these shared compo-
nents depend on other shared components.

[0004] On any given machine, at present there is one
version of each of these components shared by applications,
such as the most-recently installed version, although some
mechanisms are known that replace an installed component
only when an available replacement component has a higher
version number. The metadata maintained for using these
components is generally maintained in the system registry,
and the application has the names of the needed components
compiled into its binary code. Because in general the appli-
cation does not change as components change, to function
properly, global component sharing requires that any shared
component function exactly like previous other versions of
that component with respect to what an application expects.
In practice, however, perfect backwards compatibility is
difficult if not impossible to achieve, among other reasons
because it is impractical to test the many configurations in
which the shared component may be used. For example,
both newer and older applications end up sharing the same
component, whereby over time, fixing and improving the
component becomes increasingly difficult. Moreover, the
practical functionality of a component is not easily defined.
For example, some applications may utilize unintended side
effects in a component that are not considered part of the
core function of the component, e.g., an application may
become dependent on a bug in a component, and when the
component publisher chooses to fix that bug, the application
fails. Of course, on the other side, application writers cannot
test future versions of components.

Jul. 25, 2002

[0005] As a result, problems occur when a component is
updated to its newer version, such as when a new application
or operating system service pack is installed with updated
copies of components, as the newly installed component
versions become the ones used by other applications and
components on the system. The sheer volume of applications
and components that rely on other components magnifies
this problem, which is sometimes referred to as “DLL Hell.”

[0006] One mechanism that provided sharing for some
applications while enhancing the stability of other applica-
tions was provided in Microsoft Corporation’s Windows®
2000 and Windows® 98, Second Edition, operating systems.
In general, this mechanism provided a way for an applica-
tion to be bound to a local copy of a component instead of
a shared copy. However, with this solution, a component
needed to be isolated per application, which resulted in
multiple copies of the same component version having to be
maintained on the system. Additionally COM data was not
isolated, limiting this mechanism’s usefulness with COM
objects.

[0007] At the same time, even if it was possible to
permanently bind an application to one version of a shared
component, it is not always desirable to do so. For example,
a critical security fix may be made to a component, but if an
existing application were permanently bound to an earlier
version of that component, the application would not be
protected by the security fix. In sum, the existing models for
sharing components have many problems and shortcomings.

SUMMARY OF THE INVENTION

[0008] Briefly, the present invention provides a method,
system and infrastructure that allow an application to run
with specified versions of components bound thereto, while
allowing the application author and/or component publisher
to change the version as desired. In an alternative mode, an
administrator may also have input (e.g., the final decision) as
to specifying the version to be used. A component is often
packaged with other components as an assembly, wherein an
assembly is set of one or more component files that are
versioned and ship as a unit, and thus as used herein a set of
one or more components are also referred to as an assembly,
and a component publisher an assembly publisher.

[0009] Each assembly may exist and run side-by-side on
the system with other versions of the same assembly being
used by other applications. To this end, the application
provides an application manifest to specify any desired
assembly versions. The application author may also provide
(e.g., at a later time) an application configuration that
overrides the binding information in the application mani-
fest. The present invention also allows an assembly pub-
lisher to provide a publisher configuration that may similarly
control which assembly version will be used. In a first
alternative mode, the application configuration (when
present) is applied after any publisher configuration is
applied and thus overrides the publisher configuration’s
binding information. In a second alternative mode, the order
of applying the configurations is reversed, whereby the
publisher configuration may change the application configu-
ration’s binding override information. In this second alter-
native mode, the application configuration may have a
setting therein that bypasses the publisher configuration, in
a “safe” mode of operation. Lastly, (preferably also in this



