US 2002/0100017 A1l

second alternative mode), an administrator configuration
may be present that is capable of overriding the other
configuration version binding information. Some or all of
the various configuration data structures (e.g., the publisher
configurations) themselves may wrapped as assemblies,
thereby benefiting from the characteristics of assemblies,
including versioning of configurations, strong naming of
configurations, and so on.

[0010] In this manner, the present invention enables appli-
cations to explicitly use different versions of assemblies
from what the application as originally shipped had speci-
fied. This allows for exact management and control of
assemblies during the lifecycle of the application. To deter-
mine the correct version, at runtime, in the first mode, the
present invention first interprets the application manifest
(e.g., released with the application), followed by a publisher
configuration, if present, that may redirect (re-map) any
assembly versions specified in the application manifest to
other assembly versions. Then, if an application configura-
tion is present, the application configuration is interpreted to
redirect some or all of the current binding information, e.g.,
for the current assembly version to another assembly ver-
sion, as specified therein.

[0011] In the second alternative mode, the present inven-
tion first interprets the application manifest (e.g., released
with the application), followed by the application configu-
ration, if present, that may redirect (re-map) any versions
specified in the application manifest to other versions. Then,
if a publisher configuration is present, and the application
configuration does not bypass the publisher configuration
via a special safe mode, the publisher configuration is
interpreted to (possibly) redirect the current binding infor-
mation, e.g., for that assembly version to another assembly
version, as specified therein. Lastly, any administrator con-
figuration is interpreted to (possibly again) change the
bindings to assembly versions.

[0012] For efficiency, the present invention may build
tables in an activation context in a pre-execution initializa-
tion phase to maintain the version mapping information,
rather than interpreting the manifest and any configurations
each time an assembly is needed, (i.e., per-request file
mapping including adjusting for configurations is straight-
forward to implement, but less efficient). The activation
context tables provide fast mapping from assembly names
provided by the application, including version-independent
names, to the correct versions as specified in the manifest
(normally fully-named assemblies) and altered by any con-
figurations. Once built, the tables may be cached, e.g., such
as in the first alternative mode for the time that the appli-
cation instance runs (lifetime of the process), whereby the
information therein is available as needed. In an alternative
mode such as the second alternative mode, the tables or
other binding data may be dynamically recalculated.

[0013] To use the tables, in the pre-application execution
phase when creating a new process, the operating system
checks for an application manifest in same file system
directory as the calling executable. In the first alternative
mode, when an application manifest exists, the operating
system checks for an activation context for the application
that was built from the manifest and configurations. If the
activation context does not exist (for example this is the first
time application has been executed), or it exists but is not

Jul. 25, 2002

coherent with current configuration, a new activation con-
text is created via the application manifest and configura-
tions.

[0014] At runtime, when a program requests creation of a
global object, the operating system automatically consults
the activation context built from the application and con-
figurations to locate and load the appropriate assembly
version. The operating system also maps any uses of this
named object to the appropriate version to allow for multiple
versions of the code module to run simultaneously without
interfering with each other. By the activation context built
from the application manifest and the configurations, an
application may be efficiently bound to specific assembly
versions and thereby be isolated from assembly version
changes.

[0015] At the same time, changes to the bindings are
enabled via the configurations.

[0016] Other objects and advantages will become apparent
from the following detailed description when taken in con-
junction with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIG. 1 is a block diagram representing a computer
system into which the present invention may be incorpo-
rated;

[0018] FIGS. 2A and 2B are block diagrams generally
representing alternative modes, respectively, for binding
applications to assemblies, including manifests and configu-
rations that are used to specify assembly version bindings in
accordance with aspects of the present invention;

[0019] FIGS. 3A and 3B are block diagrams generally
representing manifests and configurations for binding an
application to a specified assembly version in alternative
modes, respectively, in accordance with aspects of the
present invention;

[0020] FIG. 4 is an example of information maintained
within an activation context in accordance with an aspect of
the present invention;

[0021] FIG. 5 is a block diagram generally representing
various assemblies for utilizing an activation context at
runtime to locate and load a particular version of a requested
assembly version in accordance with an aspect of the present
invention;

[0022] FIGS. 6-7 comprise a flow diagram representing
general steps taken to initialize an activation context in a first
alternative mode based on manifests and configurations in
accordance with an aspect of the present invention;

[0023] FIG. 8 is a representation of a dependency graph
useful in constructing the activation context in accordance
with an aspect of the present invention;

[0024] FIG. 9 is a flow diagram representing general steps
taken to utilize an activation context during runtime in
accordance with an aspect of the present invention; and

[0025] FIGS. 10-11 comprise a flow diagram representing
general steps taken to determine assembly versions in a
second alternative mode based on manifests and configura-
tions in accordance with an aspect of the present invention;



