US 2002/0100017 A1l

144, application programs 145, other program modules 146,
and program data 147 are given different numbers herein to
illustrate that, at a minimum, they are different copies. Auser
may enter commands and information into the computer 20
through input devices such as a keyboard 162 and pointing
device 161, commonly referred to as a mouse, trackball or
touch pad. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite dish, scanner, or
the like. These and other input devices are often connected
to the processing unit 120 through a user input interface 160
that is coupled to the system bus, but may be connected by
other interface and bus structures, such as a parallel port,
game port or a universal serial bus (USB). A monitor 191 or
other type of display device is also connected to the system
bus 121 via an interface, such as a video interface 190. In
addition to the monitor, computers may also include other
peripheral output devices such as speakers 197 and printer
196, which may be connected through an output peripheral
interface 190.

[0035] The computer 110 may operate in a networked
environment using logical connections to one or more
remote computers, such as a remote computer 180. The
remote computer 180 may be a personal computer, a server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to the computer 110,
although only a memory storage device 181 has been
illustrated in FIG. 1. The logical connections depicted in
FIG. 1 include a local area network (LAN) 171 and a wide
area network (WAN) 173, but may also include other
networks. Such networking environments are commonplace
in offices, enterprise-wide computer networks, intranets and
the Internet. When used in a LAN networking environment,
the computer 110 is connected to the LAN 171 through a
network interface or adapter 170. When used in a WAN
networking environment, the computer 110 typically
includes a modem 172 or other means for establishing
communications over the WAN 173, such as the Internet.
The modem 172, which may be internal or external, may be
connected to the system bus 121 via the user input interface
160 or other appropriate mechanism. In a networked envi-
ronment, program modules depicted relative to the computer
110, or portions thereof, may be stored in the remote
memory storage device. By way of example, and not limi-
tation, FIG. 1 illustrates remote application programs 185 as
residing on memory device 181. It will be appreciated that
the network connections shown are exemplary and other
means of establishing a communications link between the
computers may be used.

[0036]

[0037] The present invention is generally directed to bind-
ing application programs to configuration (also referred to as
policy) determined, isolated versions of components,
(including code and/or data), per-application program or the
like, in a manner that allows multiple versions of the same
component to exist and operate side-by-side on a system.
For practical purposes, components are often collected into
an assembly, which, when referring to items such as a
component, is the lowest unit of storage packaged for
activation, distribution and versioning. Rather than deal with
individual components, of which there may be a relatively
large number, many of the actions regarding components
that are grouped together can be handled by referring to their

Isolating and Binding Assembly Versions

Jul. 25, 2002

assembly. For example, rather than list in the manifest 204
the dependencies on a large number of individual compo-
nents that are packaged together in a component assembly,
the manifest may simply list a dependency on the assembly.
As used herein, the term “assembly” will refer to one or
more components, whether referring to a single component
(e.g., one contiguous DLL) or to a plurality of components
grouped together.

[0038] Assemblies can be shared, such as when more than
one application or the like needs an instance of the assem-
bly’s code. To provide significant flexibility while being
transparent to existing and newly-developed applications,
the present invention has been implemented in an operating
system, with applications being run via the operating sys-
tem. As will be understood, however, the present invention
is not limited to applications and/or an operating system
implementation, but rather is capable of being implemented
by virtually any mechanism internal or external to execut-
able code (e.g., an application) that needs or wants to use a
specific version of an assembly. Note that as used herein, an
application program is not limited to any particular type of
software product, but includes any executable code such as
operating system components, drivers and so on that in turn
use other assemblies. Notwithstanding, the present invention
will be primarily described with an application that uses
assemblies such as DLLs and objects.

[0039] FIG. 2A shows an application program 200 main-
tained, for example, as an executable file in a file system
folder 202 in a non-volatile storage (e.g., hard disk drive
141) of the computer system 100 (FIG. 1). To identify
specific versions of one or all of the specific assemblies that
the application prefers to use, an application such as the
application 200 of FIG. 2A is associated with an application
manifest 204. For example, one way in which an application
may be associated with a manifest is to store the manifest in
the same folder 202 with the application executable, named
with the same filenames but with different file extensions
(e.g., “.exe” versus “.manifest”). Alternatively, the applica-
tion manifest 204 may be compiled into the application’s
binary code/data, as long as it can be easily accessed. Note
that other applications (typically in different folders) may or
may not have application manifests associated therewith.

[0040] In general, an application manifest is an XML
(extensible Markup Language) formatted file or other suit-
able file that comprises metadata (e.g., 206) describing an
application’s dependencies on shareable assembly versions,
(sometimes referred to as side-by-side assemblies), and also
includes metadata to describe any privatized assemblies
(described below). For example, the application manifest
204 specifies in its dependency data 206 a dependency on a
particular version (e.g., v1.0.0.0) of a shared assembly,
assembly 208, as represented in FIG. 2A by the arrow
between blocks 206 and 2081. Note that the application
manifest 204 may also specify dependencies on other assem-
blies. Further, note that other data structures including a
configuration, (described below), which are not ordinarily
considered side-by-side assemblies, each may be wrapped as
an assembly to thereby obtain the benefits that an assembly
may have, such as versioning, naming and so forth. The
wrapping of a configuration as an assembly including asso-
ciated version information is generally represented in FIG.



