US 2002/0100017 A1l

version as a default. In this manner, a configuration does not
have to concern itself with assemblies whose versions are
not to be changed.

[0063] Although it is possible to dynamically interpret the
manifest and/or configurations to locate the appropriate
version of an assembly each time an assembly is requested,
assemblies are requested frequently, and thus it is more
efficient to cache the information once. To this end, the
activation APIs 300 cause an activation context 302 for that
program 200 to be constructed if a valid one does not already
exist for the application 300, (for example, when the appli-
cation is being run for the first time or the activation context
302 exists but its information is invalid). Once created, the
activation context 302 is maintained in a persistable binary
form for caching. In general, there is an activation context
for each application that has an expressed assembly depen-
dency, and each activation context includes one or more
mapping tables preferably hashed for quick lookup. As
described below, the operating system (a runtime version
matching mechanism therein) uses the activation context
302 to determine where to retrieve the version.

[0064] To construct the activation context 302, the acti-
vation APIs call (or otherwise include) a binding/initializa-
tion mechanism 304, wherein the call is generally repre-
sented in FIG. 3A by the arrow accompanied by the circled
numeral one (1). If a new activation context 302 needs to be
constructed, the binding/initialization mechanism 304 reads
and interprets the application manifest 204 as represented in
FIG. 3A by the arrows labeled with circled numerals two (2)
and three (3). More particularly, as described above, when-
ever the operating system (e.g., a binding mechanism
therein, including the binding/initialization mechanism 304)
is asked to perform a bind for a shared assembly, the bind
client (e.g., an API called to load a DLL) is required to
provide a reference, which describes the requested assembly.
The version of the assembly reference may then be altered
by a series of configuration resolution stages, as described
herein, by which the binding mechanism decides which
version of the assembly to return to the bind client. Con-
figuration resolution allows a reference to an assembly
constructed at compile/link time to be modified after the
application has been deployed, without re-compilation/re-
linking of the assemblies involved.

[0065] As represented in FIG. 3A, in the first alternative
mode described above, the first phase in bind configuration
resolution is publisher configuration, by the arrows labeled
four (4) and five (5). In general, publisher configuration
allows shared-assembly vendors to make compatibility
statements between different revisions of their software.
These per-assembly configuration files are wrapped as
strongly-named (e.g., COM+) assemblies, and are installed
into the global assembly cache 212 (FIG. 2A), e.g., as part
of a service-pack-style update. Because publisher configu-
ration assemblies may affect all applications on the system,
these assemblies should be installed separately from appli-
cation installations, otherwise an application may “break”
other applications simply through installation.

[0066] In one implementation, a publisher configuration
assembly has the same name as the assembly it affects, but
with a further extension appended to the name, (e.g., “con-
fig”). This publisher configuration assembly has a module
reference to an XML configuration file that stores the actual

Jul. 25, 2002

binding redirect information. Moreover, because assembly
metadata contains a hash for the XML configuration file, it
is possible to validate the integrity of the configuration file.

[0067] A publisher configuration assembly is created by
authoring an XML configuration file (which may have any
name), and using an assembly linker tool or the like to create
the assembly. For example, as set forth below, a publisher
configuration file, version 1.0.0.0, for an assembly named
“test” is created, e.g., having an XML configuration file
named

[0068]

[0069] where major and minor vary with the version.

“test. [major].[minor].config”

[0070] Publisher configuration assemblies normally will
be obtained directly from the publisher as part of a service-
pack style update, intended to affect all applications on the
system. Because there is no direct link between the publisher
configuration and the applications it affects, version redi-
rects specified by the publisher configuration file may con-
tain a codebase to the targeted version in the configuration
file, otherwise the operating system will not necessarily be
able to locate the intended files. Another option is to install
the redirected version of the assembly on the machine.
Similarly, assemblies targeted by administrator configura-
tion can either be installed into the global assembly cache
212, advertised to the user, or located through a codebase
provided in the administrator configuration file.

[0071] In this first mode, the second stage of configuration
resolution, after any publisher configuration is applied,
comprises resolving any application configuration. As rep-
resented in FIG. 3A by circled numerals six (6) and seven
(7), if an application configuration exists, the binding/
initialization mechanism 304 reads and interprets the appli-
cation configuration 216. To this end, before a bind to the
assembly can proceed, the application configuration file (if
any) is accessed, and analyzed. For example, the configu-
ration data may be maintained as an application configura-
tion file, and accessed via an application base (“appbase™)
directory (e.g., the folder 202) or other suitable directory. A
name/value pair in the application context 302 specifies the
name of the configuration file.

[0072] For example, in an “.exe” runtime scenario, the file
is named with the same name as the executable, but with a
“.config” extension appended thereto, (e.g., “appname.ex-
e.config”). An application author and/or deployer may
choose to provide such a configuration file, thereby speci-
fying version redirects for particular assemblies. For
example, a configuration file may be written by an applica-
tion author to specify that references to a common shared-
assembly, whether directly provided by the application, or
indirectly from a dependent assembly’s dependency, should
use a particular version. As another example, once an
application deployer is confident that the application works
with a newer version of a shared assembly, the deployer can
choose to change the application configuration file to auto-
matically use the new version instead of the version set forth
in the application manifest. When interpreting the configu-
ration, if a relevant binding redirect statement is found in the
application configuration file, the version of the assembly
from the original reference is modified accordingly.

[0073] Whenever a binding configuration statement is
made in a configuration file, it is the responsibility of the



