US 2002/0100017 A1l

graph. Step 714 marks the current node representing the
assembly as having been handled, and the process returns to
step 614 of FIG. 6 to select (step 614) and evaluate any other
nodes in the graph that have not yet been handled, until none
remain. Once the dependency graph is complete at step 614,
the data in the dependency graph is used to construct the
activation context 302, e.g., essentially by filling in the
tables’ fields with the correct version information for each
assembly present in the graph. When constructed, the acti-
vation context is copied to the child process in the operating
system data structure’s defined environment process, mak-
ing it the process default.

[0091] Note that to avoid problems, each configuration
resolution stage is only evaluated once. For example, if a
subsequent version redirect occurs as a result of any later
configuration resolutions, the previous stages are not re-
consulted to re-apply configuration. Re-applying configura-
tion after other forms of configuration are applied may result
in circular/infinite configuration redirects, and add unneces-
sary complexity to the binding process. Notwithstanding, in
an alternative implementation, the process may, for
example, loop back to handle a situation in which a replace-
ment assembly may have another configuration associated
therewith that can cause replacement of the currently
selected assembly, and so on. Note that other safeguards
against an infinite loop may be implemented to prevent a
situation wherein versions have circular dependencies.

[0092] FIG. 9 shows the general steps taken to locate and
load the correct version at runtime, ¢.g., when a program at
runtime creates a global object, the system automatically
gives it a version-specific named object by consulting the
activation context 302 built from the manifest as altered by
any configurations. Note that FIG. 9 is intentionally stream-
lined for efficiency, i.e., the activation context is built in
advance, so that during runtime an efficient and rapid lookup
can be performed to find the appropriate version.

[0093] Beginning at step 900 the activation API receives
the application request including the version-independent
assembly name, not the version specific name, and passes it
as a parameter or the like to the runtime version matching
mechanism, where it is received at step 902. If an entry for
the name is in the activation context at step 904, the runtime
version matching mechanism returns the version specific
information (e.g., including the path and filename of the
correct version) based on the manifest at step 906. If an entry
for the name is not found in the activation context at step
904, at step 908 the runtime version matching mechanism
returns a not found status, (or alternatively can determine
and return the path and filename of the default version). At
step 910, the activation API loads the appropriate version,
and returns a loading status or the like. The operating system
also maps any uses of this named object to the appropriate
version to allow for multiple versions of the code module to
run simultaneously without interfering with each other,
whereby, for example COM object data is isolated per
object. At this time, the correct version as specified in the
manifests is loaded, even though the application’s execut-
able code did not specify any version. Indeed, by providing
an associated manifest that can be stored into the applica-
tion’s directory, an already existing application (e.g., written
and installed before the present invention) can benefit from
the present invention. In this manner, the application runs
with a controlled set of assemblies bound thereto.

Jul. 25, 2002

[0094] Turning to the second alternative mode, FIGS.
10-11 represent example steps that may be taken, such as
dynamically during runtime, to determine which version of
an assembly to bind. To this end, the binding mechanism 305
of FIG. 3B (e.g., of the operating system) may check for an
application manifest in same file system directory as the
calling executable, as represented in FIG. 10 by step 1000.
If an application manifest does not exist, the binding mecha-
nism 305 handles its absence in another manner, (step 1002),
e.g., the operating system essentially will give the applica-
tion default versions during runtime, such as by first loading
any requested component or assembly from the application’s
own directory when one is present, and otherwise using the
default assemblies from the assembly cache.

[0095] When step 1000 determines that an application
manifest exists, it is interpreted as represented by step 1004.
Then, in this second mode, step 1006 tests whether an
application configuration exists for this application, e.g., in
the application directory. If not, step 1006 branches ahead to
FIG. 11 to test for whether a publisher configuration applies,
as described below. If an application configuration is found
at step 1006, step 1006 branches to step 1008 wherein the
application configuration is interpreted to determine whether
there is an instruction therein for replacing the assembly
version that is currently under evaluation. If such a relevant
replacement instruction is found, step 1008 branches to step
1010 wherein the current assembly binding information is
replaced.

[0096] FIG. 11 represents the next steps in this second
alternative mode, wherein if an application configuration
exists, step 1100 tests whether it includes data specifying the
safe mode of configuration resolution. If the safe mode is
specified, step 1100 avoids the publisher configuration
evaluation by branching ahead to test for administrator
configuration, described below with respect to steps 1108,
1110 and 1112. Note that although not specifically shown in
FIGS. 10 and 11, step 1006 (FIG. 10) can branch to step
1102 (FIG. 11) when no application policy exists, unless
something other than the application configuration (e.g., an
administrative setting) is capable of setting the safe mode.

[0097] If the safe mode is not specified at step 1100, step
1100 branches to step 1102 to test for a publisher configu-
ration. If a publisher configuration is found at step 1102, step
1102 branches to step 1104 wherein the publisher configu-
ration is interpreted to determine whether there is an instruc-
tion therein for replacing the assembly version that is
currently under evaluation, either as originally specified in
the manifest or as replaced by application configuration (as
described above with respect to step 1010). If a replacement
instruction is found at step 1104, step 1104 branches to step
1106 wherein the replacement is made, otherwise step 1104
effectively bypasses step 1106.

[0098] The process continues to step 1108, which repre-
sents the start of the second mode’s third phase of the
configuration resolution process, wherein a test is performed
to determine whether the system has an administrator con-
figuration, e.g., in the system directory. If not, step 1114 is
executed, as described below. If so, step 1108 branches to
step 1110 wherein the administrator configuration is inter-
preted to determine whether there is an instruction therein
for replacing the current assembly version with another
version. If a replacement instruction is found, step 1110



