US 2009/0205018 Al

[0059] Referring to FIG. 3, the capabilities of alice in
RBAC, caps,,~(alice)={(r, mrecl), (w, mrecl), (r, mrec2),
(w, mrec2), (r, mrec3), (w, mrec3)} because
alice—Doctor—{w}—=Med Records, alice—"*
Intern—{r}—=Med Records, Doctor—=*RBAC, Intern—"*
RBAC and mrec1, mrec2, mrec3 are assigned to Med Records
and Med Records—*RBAC.

[0060] Referring to FIG. 5, a PM permission in the system
20 is atriple (u, op, 0) where uis a user, op is an operation, and
0 is an object, and for each policy class pc, under which o is
protected, indicating that the user u has an attribute ua, in pc,,
object o has an attribute oa, in pc,, and there exists an opera-
tion set ops, containing op that is assigned to both ua, and oa,.

[0061] With respect to FIG. 3, the triple (alice, w, mrec2) is
a permission, because (1) mrec2 is contained in both RBAC
and MLS, (2) both Doctor and Secret are alice’s user
attributes, where Doctor is contained in RBAC and mrec2 is
contained in MLS, (3) S_TS and Med Records are object
attributes of mrec2, where Med Records is contained in
RBAC and S_ST is contained in MLS, and (4) the operation
set {w} is assigned to both Doctor and Med Records and is
assigned to both Secret and S_TS. In contrast, the triple (bob,
W, mrec2) is not a permission, because mrec2 is contained in
both RBAC and MLS, but bob does not have an attribute in
MLS.

[0062]

[0063] An administrative operation simply creates, deletes,
or modifies an existing policy state data relation. The set of
administrative operations include, for example, create/delete
user, create/remove assignment, etc. The state of the overall
PM policy changes as a consequence of the execution of an
administrative operation. The administrative operations are
executed on behalf of a user via administrative commands
(users never execute operations directly), or automatically by
the system 20 in response to a recognized event. Event-re-
sponse relations are described in the following section.
[0064] An administrative operation could be specified as a
parameterized procedure, whose body describes how a data
set or relation (denoted by R) changes to R":

Administrative Operations

opname(x1, . . . ,xk) {
R'=1(R,x1,... ,xk)

[0065] For example, consider the following administrative
operation CreateUser:

CreateUser(u) {
U=UU {u}

[0066] The CreateUser administrative operation specifies
that the creation of a new user with the identifier “u” consists
of augmenting the user set U with the new user identifier.
Included in this specification is the fact that if a user with the

same identifier already exists, the operation has no effect.

Aug. 13,2009

[0067] An administrative command is a parameterized
sequence of administrative operations prefixed by a condition
and has the format:

commandName(X;, ...,X;)
if (condition) then
paop,
paop,,
end

[0068] wherex,,...,xk(k=0) are (formal) parameters and
paop,, . . ., paop,, (n=0) are primitive administrative opera-
tions which may use x,, . . ., X, as their parameters. The
condition tests, in general, whether the user who requested
the execution of the command is authorized to execute the
command (i.e., the composing primitive operations), as well
as the validity of the actual parameters. If the condition evalu-
ates to false, then the command fails. For example, the com-
mand that grants a user attribute a set of operations on an
object container could be defined as follows:

grant(crt__process, ua, 0a, op|,...,0p,,)
if (uaeUA AoaeOAA
Viel..m op,eOPA
ops = OPA
is__auth(crt_process.user, create__opset) A
is__auth(crt__process.user, oattr__assign_opset__to, oa)A
is__auth(crt__process.user, uattr__assign_ to_ opset, ua)) then
create__opset(ops, opl,...,opm)
assign__opset_ to__ attr(ops, oa)
assign_ attr_to_ opset(ua, ops)
end

[0069] For convenience, a command may exist inside
another command.

[0070] Prohibitions

[0071] Permission relations alone are not sufficient in
specifying and enforcing the current access state for many
types of policies. Other policies pertain to prohibitions or
exceptions to permissions. Deny relations specify such pro-
hibitions. System 20 deny-relations take on two forms, user-
based deny and process-based deny. User-based deny rela-
tions associate users with capabilities (op, o) that the user and
the user’s subjects are prohibited from executing. For
example, although a user with the attribute IRS Auditor may
be allowed to review IRS tax records, a user-based deny
relation could prevent that user from reviewing his/her own
tax record. Process-based deny relations associate processes
with capabilities (op, o) that the processes are prohibited from
executing. Process-based deny relations are usually created
through the use of obligations (see below). User-based deny
relations can be created either through administrative com-
mands or through obligations.

[0072] A user-based deny relation is a triple <u, ops, 0s>,
where €U, 0pE2°7, and 0s&2°. The meaning of the user-
based deny is that a process executing on behalf of user u
cannot perform any of the operations in ops on any of the
objects in 0s. The set of user-based deny relations is denoted
as UDENY in FIG. 2.

[0073] A process-based deny relation is a triple <p, ops,
0s>, where pEP, ops€2°%, and 0s&2°. The meaning of the
process-based deny is that the process p may not perform any
of'the operations in ops on any of the objects in 0s. The set of
process-based deny relations is denoted as PDENY in FIG. 2.



