US 2009/0205018 Al

(TS) and save the latter object, it is easy to show (applying the
same kind of reasoning) that she succeeds.

[0136] In another example, in the case when the copy and
paste operations are performed in different processes, user
alice issues a request to read mrec1 (TS) in a process p,. The
reference mediation function grants the request. At the suc-
cessful completion of the read operation, a deny relation (p,,
{w}, -I'S)is added to the policy configuration as specified by
the event-response relation (1). Also, an event-response
[0137] (3.2) p, creates object=assign new objectto TS
[0138] 1is generated according to (3). Next, alice issues a
request to read mrec2 (S) in a new process p,. The reference
mediation grants the request. At the successful completion of
the read operation, a deny relation (p,, {w}, -S_TS) is added
to the policy configuration as specified by the event-response
relation (2). Also, an event-response:

[0139] (4.2) p, creates object=assign new objectto S
[0140] is generated according to (4).
[0141] alice may try to copy some information from object

mrec] (top-secret) to object mrec2 (secret) and save the latter.
To copy the information from object mrecl to the clipboard,
the process p, first creates an object that represents the clip-
board. According to (3.2) and (4.2) the new object is assigned
to TS. Second, the process p, actually copies the information
from mrecl to the clipboard and a “copy object” event is
generated. According to relation (5), the clipboard object is
assigned to all attributes of mrec1. The fact that the clipboard
object is already assigned to TS does not matter. Hence, the
clipboard object becomes assigned to TS and Med Records.
[0142] Next, alice pastes the clipboard content to the mrec2
object in process p,. The paste action starts with a read opera-
tion from the clipboard object, which is classified TS. Accord-
ing to the event-response relations (1), the system 20 gener-
ates the deny relations (p,, {w}, <I'S). The clipboard content
is pasted into the mrec2 object. Finally, alice tries to save
(write) the mrec2 object. Because mrec2 is not contained in
TS, the deny relation (p,, {w}, —IS) prevents the current
session from saving mrec2.

[0143] Another example shows that RBAC is not designed
to prevent unauthorized leaking of data. For example, with
respect to FIG. 3, the RBAC policy specifies that Doctors and
Interns can read medical information, and this suggests that
only doctors and interns can read medical information. Under
this configuration, nothing prevents bob from copying the
contents of mrec3 and pasting it into the object projectl,
which can be read by charlie who is not a Doctor or Intern. It
should be noted that a malicious process acting on bob’s
behalf could also read medical information and write it to
projectl without bob’s knowledge.

[0144] To prevent this unlawful leakage, the system 20 can
apply the approach that was used to prevent leakage under
MLS to the context of RBAC. Consider the following event-
response relation:

[0145] (6) read “Med Records” object=>create deny(cur-
rent process, {w}, =“Med Records™).

[0146] Relation (6) will prevent bob using a single process
from reading contents of any medical record (e.g., mrec3) and
subsequently writing it to any object outside the Med Records
container (e.g., projectl).

[0147] Inascenario where bob copies data from mrec3 and
pastes it to project] in different processes, relation (5) assigns
the clipboard object to the Med Records container. The sec-
ond process for the paste operation reads the clipboard object,
and according to the relation (6) the system 20 generates a
deny relation that prevents bob from writing (saving)
projectl.

Aug. 13,2009

[0148] In another example, under Discretionary Access
Control (DAC), the user who creates an object is called the
object “owner” and controls users’ capabilities on that object,
based on the users’ or user groups’ identities. The capabilities
that the owner controls include operations on the object’s
content (e.g., read/write/execute), as well as operations that
change the object’s access control policy (e.g., transfer own-
ership of the object or grant/revoke users’ access to the
object).

[0149] The system 20 can be programmed to achieve the
objectives of DAC policies. For example, a user’s identity can
be represented through a user attribute that specifies the name
of'the user and which has that user as its only member (i.e., the
user in question is the only user assigned to this user
attribute). The attribute may be called a “name attribute”.
Similarly, a group identity could be specified as a user
attribute that contains only the users that are members of that
group. In FIG. 8, which partially illustrates a system 20 con-
figured to achieve a DAC objective, the user attribute “Alice
Smith” is user alice’s name attribute, while the “DAC users”
user attribute represents the group of all users included in the
DAC policy class.

[0150] User’s ownership and capabilities over an “owned”
object can be specified under this configuration by placing the
object in a container specially created for that user. We refer
to this container as the user’s home. For example, the object
attribute “alice home” denotes the home container of user
alice. The creation of a user’s home must be accompanied by
setting up three categories of capabilities for the user: (a)
capabilities to access the content of the objects contained in
the home container; (b) capabilities to perform administrative
operations on the contents of the home container (e.g., object
attribute to object attribute assignments, creation of new
object attributes); and (c) capabilities to transfer ownership or
grant/revoke other users’ access to the objects inside the home
container. The user, his’her home container and the capabili-
ties (a), (b), and (c¢) could be conveniently created through a
single administrative command—create_dac user (user id,
user name). Typically, under DAC, a user initially obtains
ownership and control over an object as a consequence of
object creation. This can be achieved by the system 20 by
defining an event-response relation where the event is the
object creation and the response is the assignment of the new
object to the user’s home container.

[0151] Using the policy configuration described above,
transferring the ownership of an object to another user may be
achieved by assigning the object to the other user’s home
container and optionally deleting its assignment to the origi-
nal owner’s home. Note that the transfer requires the permis-
sion to assign objects from the original owner home to
another user’s home container.

[0152] Granting another user or group of users access to an
object 0 may be achieved by the owner by creation of the
assignment g—{r, w}—0 where g is a user attribute that
represents the other user or group of users in the DAC users.
FIG. 9 shows how alice could grant user bob read/write access
to one of her objects by using such assignments to bob’s name
attribute “Bob Dean”. Other configuration strategies exist as
well.

[0153] In another example, an additional feature of the
system 20 is the capability to establish a library of policy
configurations. The principle is that an administrator does not
need to configure policy from scratch. Once a policy (say
DAC) has been defined and tested by security experts, the
policy can be made available for importation and instantia-
tion. Policy configuration can also be parameterized, provid-
ing opportunities for customization. For example, with



