US 2009/0205018 Al

respect to an MLS policy, the elements of the dominance
relation could be parameterized, and the specific levels could
be defined just prior to importation, or with respect to a DAC
policy, delegation details could be defined.

[0154] The following is an example of how system 20 can
be configured to offer support to an application. One type of
application provides services that are independent of access
control. These applications include, for example, text editors,
spreadsheets, and drawing packages. Another type of appli-
cation provides services through the use of an access control
policy. For example, e-mail applications provide for the read-
ing of messages and attachments through the discretionary
distribution of objects, and workflow management applica-
tions provide for the reading and writing of specific docu-
ments by a prescribed sequence of users.

[0155] In the following example, the system 20 is config-
ured to support a simple workflow application. In this
example, the following activities and users or roles perform
those activities sequentially.

[0156] Activity 0. A user in the “Secretary” role fills out a
purchase order form and attaches a “routing slip” that speci-
fies nZ1 users and/or roles and the order in which they must
approve and sign the purchase order.

[0157] Activity k=1 to n: The user or a user in the role
specified in the routing slip at position k approves and signs
the purchase order.

[0158] Activity n+1: A user in the “Acquisition” role exam-
ines the purchase order before ordering the items.

[0159] Itis assumed that the workflow policy also imposes
the restriction “No user is allowed to sign a purchase order
twice”.

[0160] Inthe following, we describe the system 20 configu-
ration used to specify and enforce the policy described above.
[0161] First, the purchase order will be modeled by an
object. Activity O performed by a user in the Secretary role
consists of reading an empty form object, filling out the form
and creating a purchase order object with the data from the
form. Each signing activity consists of reading the purchase
order object from the specified user’s or role’s work items,
applying maybe a graphic and/or electronic signature to its
content, and writing back the purchase order object. Finally,
activity n+1 consists of simply reading the purchase order
object. The purchase order object will not be accessible to a
user unless all previous activities as specified in the sequence
have been successfully completed. Note that the policy
enforcement will be performed by the OS kernel, not by the
application.

[0162] The system 20 configuration will include two policy
classes, DAC and RBAC. The DAC policy will comprise the
user identifiers, the user name attributes, and a work items
object container for each user. Each user has read/write access
to its work items.

[0163] The RBAC policy will comprise the user identifiers,
the Secretary role, a few “signing” roles, and the Acquisition
role. The Secretary role has read access to a blank purchase
order form included in the Forms container, write access to a
container of Completed Forms, and the privilege of compos-
ing and registering event-response relations with the system
20. Each signing role has read/write access to its work items.
The Acquisition role has read access to the container of
Approved Orders. FIGS. 10a-¢ illustrate a configuration with
three signing roles (Accounts Receivable, Contracting, and
Accounts Payable) and three signing users (alice, bob, and
charlie), a Secretary user, katie, and an Acquisition user, dave.
[0164] The activity sequencing will be ensured by the sys-
tem 20 changing the purchase order location after each suc-
cessful completion of an activity. Behind the automatic

Aug. 13,2009

moves performed by the system 20 is an event-response script
composed and registered with the system 20 by the workflow
application running on behalf of the user acting in the Secre-
tary role, just before the creation of a new purchase order.
[0165] Processing of a purchase order starts with the user
katie in the Secretary role filling the empty form, attaching a
routing slip, and saving the form in the “Completed Forms”
container as object pol121 for example. The same user also
generates n+1 event-response relations that specify what
should happen after the successful completion of each of the
activities 0, 1, ..., n.

[0166] This example assumes that the routing slip as com-
posed by katie contains, in order, user alice, role Contracting,
and role Accounts Payable. The event-response relation cor-
responding to the successful completion of activity 0 might
look as follows, assuming that the first on the routing slip is
user alice:

[0167] R,: write object pol21 in “Completed Forms”
=vassign crt_object to “alice work items”; delete assignment
of crt_object to “Completed Forms.”

[0168] For an activity k with k€1..n-1, the corresponding
event-response relation might look as follows:

[0169] R,: write object po121 in “Role/user, work items”
=assign(crt_object, “Role/user,,, work items”); delete
assign(crt_object, “Role/user, work items”); create deny(crt_
user, {w}, crt_obj).

[0170] The last administrative command prevents a user
from signing twice the purchase order (actually, the user
could sign the order but not save it back). Finally, for activity
n the event-response relation may be as follows:

[0171] R,,: write object po121 in “Role/user,, work items”
=assign(crt_object, “Approved Orders™); delete assign(crt_
object, “Rolefuser, work items™); delete event/response(R,, .
. R

[0172] This sends the purchase order to the “Approved
orders” container, from where the Acquisition role can read it.
The last command in this relation also deletes all event-
response relations related to this purchase order object. For
our example, the event-response relations are:

[0173] R,: write object pol21 in “Completed Forms”
=assign crt_object to “alice work items”; delete assignment
of crt_object to “Completed Forms”.

[0174] R,: write object pol21 in “alice work items”
=sassign(crt_object, “Contracting work items™); delete
assign(crt_object, “alice work items”); create deny(crt user,
{w}, crt_obj).

[0175] R,: write object po121 in “Contracting work items”
=vassign(crt_object, “Accounts Payable work items™); delete
assign(crt_object, “Contracting items”); create deny(crt user,
{w}, crt_obj).

[0176] R,:write object po121 in “Accounts Payable items”
=sassign(crt_object, “Approved Orders™); delete assign(crt_
object, “Accounts Payable work items”); delete event/re-
sponse(Ry, Ry, Ry, R3).

[0177] As noted before, when alice performs activity 1,
right after she saves the signed purchase order in her work
items container, the system 20 generates a deny (alice, {w},
pol21), according to the event-response relation R . If alice
tries to sign the purchase order again as a member of the
Accounts Payable role in Activity 3, she would be prevented
from saving the purchase order by the above deny. Only
Charlie would be able to sign po121 for the Accounts Payable
role.

[0178] The system 20 provides benefits over the existing
access control paradigm. For instance, the system 20 provides
policy flexibility. Virtually any collection of attribute-based
access control policies can be configured and enforced (e.g.,



