US 2008/0125219 Al

doing one thing at atime. This switching can happen so fastas
to give the illusion of simultaneity to an end user. For
instance, a typical computing device may contain only one
processor, but multiple programs can be run at once, such as
an ECI for player tracking alongside an a game program;
though the user experiences these things as simultaneous, in
truth, the processor may be quickly switching back and forth
between these separate threads. On a multiprocessor system,
threading can be achieved via multiprocessing, wherein dif-
ferent threads can run literally simultaneously on different
processors.

[0184] Inembodiments of the present invention, multipro-
cessor systems with multiple CPUs may be used in conjunc-
tion with multiprocessing. For example, an ECI process or
ECI thread may be executed on one or more CPUs while a
game is executed on one or more different CPUs. In a par-
ticular embodiment, in a multiprocessor system, CPU acces-
sibility may be limited according to the application. For
instance, ECIs may be only executed on certain processors
and games on other processors. The ECIs may be prevented
from utilizing processors dedicated to executing games or
other applications.

[0185] Threads are distinguished from traditional multi-
tasking operating system processes in that processes are typi-
cally independent, carry considerable state information, have
separate address spaces, and interact only through system-
provided inter-process communication mechanisms. Mul-
tiple threads, on the other hand, typically share the state
information of a single process, and share memory and other
resources directly. Although, as noted above, threads of the
same process may be assigned to different resource partitions.
Context switching between threads in the same process may
be typically faster than context switching between processes.
[0186] In general, the term, “process” refers to a manipu-
lation of data on a device, such as a computer. The data may
be “processed” in a number of manners, such as by using
logical instructions instantiated in hardware, by executing
programming logic using a processor, or combinations
thereof. Thus, a “process” for the purposes of this specifica-
tion may describe one or more logical components instanti-
ated as hardware, software or combinations thereof that may
be utilized to allow data to be manipulated in some manner.
Therefore, the terms “process” and “process thread” as
described are provided for the purposes of clarity only and are
not meant to be limiting.

[0187] Four resource partitions, 360, 366, 368 and 370 are
illustrated in FIG. 8. An operating system resource partition
360 that includes processes (or process threads) executed by
the operating system. A game resource partition 366 from
which game processes (or process threads) are executed. An
ECl resource partition 382 from which a first ECI process 382
(or ECI process thread) may be executed and an ECI resource
partition 368 from which a second ECI process 380 (or ECI
process thread) may be executed. As noted above, resource
partitioning may be performed at the process level, the pro-
cess thread level or combinations thereof.

[0188] In one embodiment, resource partition definitions
308, such as resources allocated to each resource partition and
processes that are enabled to execute in each partition (e.g.
partition assignments 310) may be stored in the secure
memory 326. Data stored in the secure memory may have
been authenticated using the authentication components 304
stored on the Boot ROM 302. When a process is launched by
the operating system, it may check to see which resource

May 29, 2008

partition to assign the process using the partition assignments
310, which may include a list of processes that may be
executed in each partition. In one embodiment, some pro-
cesses may be assigned to more than one resource partition.
Thus, when the resources associated with a first resource
partition are being fully utilized, the process may be executed
from a second resource partition with available resources.
[0189] In another embodiment, the partition assighment
information may be stored with each executable image, such
as images, 316, 318 and 320. When a process or process
thread is launched, the operating system may determine
which partition to assign the process or the process thread (In
general, each process will have at least one process thread).
With this method, new executable images may be down-
loaded to the gaming machine from a remote device that are
not listed in the partition assignments 310 and still be
assigned to a resource partition.

[0190] In a particular embodiment, the operating system
may only allow one ECI process or ECI process thread to
execute in a partition at one time. In other embodiments, a
plurality of ECI processes may be executed from a single
partition at one time. When only a single ECI process is
allowed to execute from a partition at one time, the amount of
resources available to the ECI process occupying the partition
may be more predictable. This type of architecture may be
valuable when EClIs are provided from two or more different
hosts simultaneously where each remote host doesn’t neces-
sarily know the resource requirements utilized by an ECI
from another remote host. When two or more ECIs are
allowed to occupy a single partition and execute simulta-
neously, the resources provide to each ECI, respectively, may
be more vary more if each respective ECI is competing for a
limited amount of resources.

[0191] The resource competition may be become more
acute when the resources needed by two or more ECIs are
near or greater than one or more resources (e.g., CPU cycles
or memory) provided in a partition. In some embodiments,
the gaming machine may prioritize resource utilization by
each ECI process. For instance, an execution priority may be
assigned to each ECI process executing in aresource partition
such that based on the priority one ECI process is favored over
another ECI process when they are both competing for
resources.

[0192] The priority assigned to each ECI process may be
based on other factors. A priority to resources may be
assigned to an ECI process based upon its function. For
instance, an ECI for providing a bonus interface may be given
a higher priority to resources than an ECI for providing adver-
tising. In another embodiment, a priority may be assigned to
an ECI process in accordance with a price paid to allow the
ECI process and its content to be presented on the gaming
device. In general, prioritization for utilizing resources is
another way of providing virtualization on a gaming device.
[0193] Resources that may be monitored and limited for
each partition include but are not limited CPU usage, memory
usage, such as RAM usage, NV-RAM usage, disk memory
usage, etc., GPU (graphics processing usage), network band-
width, sound card usage and access to gaming devices, such
as displays, audio devices, card readers, bill validators (e.g.,
as described with respect to FIG. 7, for some resource parti-
tions, for security purposes, access to certain devices, such as
bill validators and cashless devices, or device features may
not be available). Resources that may be monitored on the
gaming machine 300 include the executable space 338, the



