US 2004/0104924 Al

[0134] If it is determined that the commanded effect
cannot be loaded in step 434, then in step 436 the command
is given a failure status, and the commanded effect is not
loaded to the device. Of course, only the “play” command
itself has failed; the effect data still resides in the host cache
and memory model. In some embodiments, the application
program can remain ignorant of the failure; this allows the
application program to believe that the force effect is playing
properly and to issue another play command for that effect
at a later time without disruption or additional processing
(and the later command may succeed); in addition, this
prevents the application from overreacting to the failure. In
other embodiments, it may be desirable to inform the
application program of any failure to play an effect so that
the application program can compensate for the failure in
other ways. The application program can be provided with
varying degrees of information; for example, that the effect
has been cached but did not play, or that the effect simply did
not play. The process continues to step 438, described below.

[0135] In an alternate embodiment, the process can mark
a failed cached commanded effect as “waiting.” Effects
which have a status of “waiting” can be given a high priority
to be loaded if any of the effect slots on the device should
open up in future iterations. The host can maintain the
effect’s duration while it has a waiting status so that if an
effect slot opens up, the host will know whether the waiting
effect should still be output and if so, at which point in its
duration. Thus, only effects which have a relatively long
duration need be given a waiting status. For example, if a
periodic effect having a duration of 4 seconds is waiting to
be loaded on the device, the host keeps track of the duration;
if 2 seconds have elapsed before an effect slot is available,
the host commands the periodic effect starting at the third
second. If four seconds have elapsed before an effect slot
becomes available, then the host should cancel the effect
since its duration has expired. In such a waiting embodi-
ment, the process can check whether any waiting effects can
be loaded to the device after an effect is untagged in step 422
or destroyed in step 414; if so, the create command of step
416 or step 423 can be sent for the waiting effect (if the
waiting effect has a high enough priority), and a play
command can be sent, if appropriate, to play the formerly-
waiting effect. Also, in steps 430 and 434, a waiting effect
can be assigned a priority or its existing priority can be
increased due to the waiting status, and the waiting effect
may be loaded before a currently-commanded effect if its
priority is higher. It should be noted that in many imple-
mentations, such a waiting status is unnecessary, since many
force effects are too short in duration to justify the extra
processing required. In addition, devices having several
effect slots can usually maintain realistic forces even if some
force effects are discarded.

[0136] Instep 438, the host can check whether any playing
effect has expired, similarly to step 334 of FIG. 5. If no
effects have expired, the process returns to step 406. If at
least one effect has expired, then the process continues to
step 440 to untag the expired effect in the host memory
model. In other embodiments, steps 438 and 440 can be
omitted. The process then returns to step 406.

[0137] Force effect caching on the host can also be useful
in other memory management paradigms in addition to the
implementation described above where the host maintains a
device memory model. For example, if only the device

Jun. 3, 2004

knows whether a commanded force effect can be stored in
device memory, the device is queried by the host. If the
device says that it cannot store any more effects, a driver on
the host can create and cache the effect and inform the
application program that its effect has been created, rather
than indicating that the create command has failed.

[0138] It is important to note that the process described
above preferably is implemented at a level on the host
computer lower than the application program controlling the
forces. The application program thus is unaware of all the
effect processing that may be going on. This relieves the
application program from having to determine which effects
should be destroyed and which should be created at different
times, and allows the developer of the application to focus
on other important aspects of application and force design.

[0139] FIGS. 9a and 9b are diagrammatic illustrations of
the memory of the host and device when caching a force
effect as explained in FIG. 7. In the example of FIG. 94, a
device has five effect slots 480, and all five slots have been
filled with a force effect as shown. Two of the effects are
currently playing (tagged) as shown in column 482. The
host, meanwhile, is storing a memory model 484 that
includes seven force effects 485. This is because the appli-
cation program has created seven force effects and believes
that all seven effects have been created on the device.
Therefore, two of the created force effects have been cached
by the host since the device can only store five effects.

[0140] As shown in column 486, the host driver keeps
track of which force effects have actually been created
(loaded) on the device. The host driver also keeps track in
column 488 of which force effects are currently playing, i.e.
output to the user. Thus, in the example shown, the host
knows that the effects in slots 1, 3, 4, 5, and 6 of the host are
loaded in the available slots of the device. The slots of the
host and the device need not correspond since the host loads
and unloads different effects from the device during appli-
cation execution; however, the host driver does need to
know which slots of the device the effects are stored so that
the proper index into the effect block may be sent to the
device. The host also knows that the effects in slots 3 and 4
of the host are currently playing on the device. If a cached
effect is commanded to be played by the application, such as
the Spring effect in slot 7 of the host, then the host can
examine the loaded effect slots 480 to determine which slot
the Spring effect can be loaded to. For example, the Peri-
odicl, TriggerForce, and Periodic2 effects on the device are
not currently playing; since Trigger effects have a high
priority, the Periodicl or Periodic2 effect could likely be
unloaded and the Spring2 effect loaded in the available slot,
depending on the conditions of availability and priorities
used. In addition, in some embodiments the host can also
maintain a “priority” field for each effect in the model 485
to allow the comparison of priorities for loading purposes.

[0141] FIG. 9b illustrates an embodiment 490 providing
the waiting feature described above as an alternative to step
436 in FIG. 7. The host keeps track of which force effects
are “waiting” as shown in column 492. Thus, in the example
shown, the effects in slots 1,3, 4, 5, and 6 of the device have
been loaded to the device and are all tagged, meaning they
are all being currently output. The ConstantForcel effect in
slot 2 of the host has been commanded by the application
program to be played, but there is no available effect slot to



