US 2006/0107032 Al

SHAT1 hash over the code stored in external flash, the version
number defined in the trusted computing platform alliance
(“TCPA”) main specification, date information, the text size
(e.g., the size in bytes of the flash rodata and flash function
table), the image size (e.g., the size in bytes of the flash
rodata, flash function table, and flash firmware) and the heap
pointer address.

[0106] As will be discussed in more detail below, the
secure code descriptor also may include information related
to one or more keys that may be used to verify received
information that is to be loaded into the flash memory. For
example, one field may contain the version of the signature
key and another field may contain, for example, a 2048 bit
RSA key that is used to verify the received information.

[0107] When a chip implementing a TPM is first soldered
to a motherboard by an OEM, the secure code and associated
information may not be initialized in the external flash. In
this state, a TPM may simply execute functions that are
required to boot, to load the secure code information into
flash, or to test the TPM during manufacturing.

[0108] As represented by block 418, at some point during
the manufacturing process (e.g., during a test or boot pro-
cedure) the TPM may generate an internal sequence number
and internal keys that may be unique to that specific TPM
chip.

[0109] The sequence number may be used to track the
number of updates to the flash memory. For example, every
time new secure code information is written to flash
memory, the sequence number in an internal memory may
be incremented and stored in the flash memory.

[0110] The internal keys (or keys based on these keys)
may be used, for example, to encrypt and perform authen-
tication operations on information that is stored in the flash
memory. For example, the keys stored in the OTP memory
may be used to encrypt other keys so that these other keys
may be securely stored in external memory.

[0111] The key information may be securely stored within
a security boundary associated with the TPM. For example,
the TPM may be configured to only store this information in
the clear in an on-chip memory. In this case, the TPM would
never send this information outside of the chip in the clear.
Accordingly, a key or set of keys that is stored in the OTP
memory may be used to encrypt other keys (that may be
used for the encryption, decryption, verification and authen-
tication operations) so that those other keys may be securely
stored in the flash memory.

[0112] The operations represented by blocks 420 and 422
may be performed in the event there is secure code infor-
mation to be loaded into the flash memory. At block 420 the
TPM (e.g., cryptographic processor(s) 330 in FIG. 3) gen-
erates encryption and authentication keys that may be used
to encrypt and authenticate information stored in the flash
memory. These keys may be securely stored in the flash
memory (e.g., in the TPM keys/data section 356) by encrypt-
ing the keys using the internal keys discussed above.

[0113] These encryption and authentication keys (or
related keys) also may be accessed by the instruction cache
controller (e.g., the cryptographic processor(s) 334 in FIG.
3) for operations that are discussed below. The instruction

May 18, 2006

cache controller uses these keys to decrypt and authenticate
secure code information that it retrieves from the flash
memory.

[0114] The TPM (e.g., cryptographic processor(s) 330)
uses the encryption and authentication keys to encrypt
and/or authenticate the flash secure code information. This
information may include, for example, the flash secure code
descriptor (including the public verification and encryption
keys), the flash function table, the flash read-only data, and
the compiled flash secure code.

[0115] As represented by block 422, the encrypted flash
secure code information may then be loaded into the flash
memory. During manufacturing, owner authorization may
not be required to execute the secure code load commands.
This allows an OEM to load the secure code information into
flash memory without creating the TPM device keys (e.g.,
EK and SRK). Once the secure code descriptor disables
unauthorized field upgrades (e.g., via a corresponding field
entry), any subsequent field upgrade commands may require
owner authorization. After the secure code information has
been successtully loaded to flash memory, the TPM may be
temporarily deactivated until the next system reboot.

[0116] FIG. 5 illustrates one embodiment of boot opera-
tions that may be performed in a TPM that has been
deployed in the field. As will be discussed in more detail
below, a variety of conditions may cause the TPM to be
reset.

[0117] As represented by block 502, after a reset the
system defaults to executing functions as defined in the
internal function table. For example, register 28 (r28) may
be set to point to the base address of the on-chip function
pointer table.

[0118] As represented by block 504, the system then
determines the cause of the reset. For example, when an
error caused the reset, the system may store the type of error
in a status register before initiating the reset. As a result,
when the system commences the boot operation, the system
may check the appropriate status registers to determine what
caused the reset. In some embodiments reset types may
include, for example, a power-on reset (“POR”), a reset
initiated via the LPC bus, a reset initiated by the security
assurance logic, a reset initiated as a result of an instruction
cache authentication failure (e.g., a failure that occurs when
verifying data read from the flash).

[0119] As represented by blocks 506 and 508, in some
embodiments a flash verification failure reset may cause the
system to enter a failure mode. In this case, when the system
tried to read code stored in the flash memory, the authenti-
cation check over the code may have failed. Since the code
in the flash memory cannot be trusted the system may
continue to only execute code according to the internal
function table (e.g., execute code in the internal ROM).

[0120] In some embodiments similar steps may be taken
when the reset was initiated by the security assurance logic.
Again, a security assurance logic failure may indicate that
the integrity of the system has been compromised. Accord-
ingly, the system may be set to only execute the original set
of functions that were loaded into the internal memory.

[0121] Alternatively, if the reset is caused by other types
of resets the system may perform the standard boot proce-



