US 2006/0107032 Al

dure. For example, some resets such as a power-on reset or
an LPC reset may not have been caused by a condition that
compromised the integrity of the system.

[0122] As represented by block 510, the system may
configure certain information relating to the internal keys
(e.g., those stored in the OTP memory). For example, the
system may read the OTP memory and initialize any corre-
sponding data structures in the data buffer. In addition, when
the OTP has been programmed (e.g., the system is in a
normal operating mode) the system may enable various
operations (e.g., frequency and/or reset monitoring) relating
to the security assurance logic.

[0123] As represented by block 512, during the normal
boot sequence the system may initialize the secure code
hardware (e.g., data structures and data buffers). Here the
system may set a secure code flag to FALSE. In this mode,
only commands that are used to load secure code are
allowed. This may be enforced in the command switch. In
some embodiments any functions that initialize secure code
hardware may not reside in flash memory since they may be
used to change the pointer to the function table. The system
also may verity that the type, size, and page size of the flash
memory are supported by the system.

[0124] As represented by block 514, the system also may
initialize keys for the instruction cache. For example, in an
embodiment that supports 3DES and HMAC the system
may initialize a 3DES key for decryption operations and an
HMAC-SHAI1 key for authentication operations. In some
embodiments these keys may be subsequently encrypted
using an internal key and stored in the flash memory (e.g.,
TPM keys/data 356 in FIG. 3). It should be appreciated that
these operations are provided as examples only and that the
system may use other cryptographic algorithms and perform
other operations.

[0125] As represented by block 516, the system deter-
mines whether any new and/or modified functions have been
loaded into the flash memory. In some embodiments this is
accomplished by checking to see whether there is a valid
secure code descriptor stored in the flash memory. If the
flash access fails due to a flash controller reset, the system
may retry the flash access.

[0126] If new and/or modified functions have not been
loaded into the flash memory (a “NO” at block 516), the
system continues to use the on-chip function table (e.g.,
stored in the on-chip ROM) to determine where to retrieve
program code. In this case, all functions may be retrieved
from the on-chip ROM. The branch of the process will then
proceed to block 524.

[0127] As represented by block 518, if new functions have
been loaded into the flash memory (e.g., the flash memory
contains a valid secure code descriptor), the system may be
configured to use the off-chip (flash) function table to
determine where to retrieve program code. Initially, the
system decrypts and authenticates the secure code descriptor
using, for example, the 3DES and HMAC-SHA1 keys. In
some embodiments the secure code descriptor may be
double-buffered as discussed herein. If the authentication is
not successful, the system will set appropriate field in the
secure code descriptor to indicate that the descriptor is
invalid.

[0128] Ifthe authentication is successful the system copies
the secure code descriptor to the data buffer. The system then

May 18, 2006

checks the field that indicates whether the secure code
descriptor is valid. In addition, the system checks the field
that indicates that the secure code stored in the flash memory
is valid.

[0129] Ifboth of these are valid, the system may switch to
the external function table. For example, register 28 may be
set to point to the base address of the flash function table.

[0130] In this case, the new and/or modified functions will
be retrieved from the flash memory and any original and
unmodified functions will be retrieved from the on-chip
ROM. The system may then set the secure code flag to
TRUE. In this mode, all TPM commands may be executed
in accordance with the TPM specification.

[0131] As represented by block 520, the system initializes
the instruction cache. In some embodiments this may
involve updating registers that hold the HMAC-SHA1 key,
3DES key, the secure code base address (the address of the
first secure code block), the HMAC base address (the
address of the first HMAC), the flash page size and the
firmware hash from the secure code descriptor. In some
embodiments these registers are only reset by a reset such as
a POR or an LPC reset.

[0132] As represented by block 522, the system initializes
the instruction multiplexer. In some embodiments this may
involve updating the data bus address range to which the
instruction multiplexer responds. For example, the instruc-
tion multiplexer may be initialized to respond to reads of the
flash function table and flash rodata.

[0133] As represented by block 524, as the secure code
operations complete, the system initializes the TPM. This
may involve, for example, reading TPM-related data from
the flash memory (e.g., TPM non-volatile ram 358 in FIG.
3) into the persistent memory.

[0134] The system also may initialize the secure buffer
logic. After reset the data buffer may only be accessed when
the TPM is in secure execution mode. The system thus
relaxes this lock and allows the IO memory and a portion of
the stack to be accessed when the TPM is not in secure
execution mode.

[0135] As represented by block 526, after the boot
sequence is successfully completed, the system commences
normal program execution flow. In some embodiments this
may involve using a command switch structure to handle
command requests.

[0136] Referring now to FIG. 6, one embodiment of
operations that may be performed when a function call is
invoked (block 602) will be treated. As discussed above, a
function call may involve a first instruction to retrieve the
table offset value for the function from the function table.

[0137] Accordingly, as represented by block 604, the
function call may result in a request for the function table.
The processor submits this request by issuing a read (e.g., a
load word operation) on the data bus.

[0138] As discussed above, the instruction multiplexer
may be configured to handle read requests on the data bus
for a function table. If the requested function table is stored
in the internal ROM (blocks 606-610 are inapplicable to this
case), the instruction multiplexer retrieves the function table
and returns it to the processor via the data bus (block 612).



