US 2006/0107032 Al

[0139] Alternatively, as represented by block 606, if the
requested function table is stored in the external flash
memory, the instruction multiplexer requests the informa-
tion from the instruction cache controller. If at block 608 the
function table is in the instruction cache (a cache “hit”), the
instruction multiplexer returns the function table to the
instruction multiplexer. The instruction multiplexer then
returns the function table to the processor via the data bus
(block 612).

[0140] As represented by block 610, if the function table
is not in the instruction cache (a cache “miss”), the instruc-
tion multiplexer stalls the processor while the instruction
cache controller retrieves the function table from the flash
memory. The instruction cache controller issues a request to
the flash controller to retrieve the block or blocks of data
from the flash memory that contain the external function
table.

[0141] Upon receipt of the requested block(s) the crypto-
graphic processor(s) 334 use the instruction cache keys (e.g.,
3DES and HMAC-SHAL1 keys) to decrypt and authenticate
the block(s) of data. In some embodiments, if authentication
fails the TPM is reset and enters failure mode. The TPM may
exit this failure mode after a reset (e.g., after an LPC reset
or a POR reset)

[0142] If the authentication is successful, the instruction
cache controller stores the block(s) of data in the instruction
cache and the cache line is marked as valid. In addition, the
instruction cache controller returns the function table to the
instruction multiplexer. The instruction multiplexer then
terminates the processor stall.

[0143] As represented by block 612, once the instruction
multiplexer receives the table, it returns the function table to
the processor via the data bus.

[0144] To initiate a function call, the processor sends the
instruction address to the instruction multiplexer via the
instruction bus (block 614). The instruction multiplexer
either reads the internal ROM or sends a request to the
instruction cache controller depending on the address asso-
ciated with the function (block 616). As discussed above,
this address may be obtained from the appropriate function
table. Advantageously, the instruction multiplexer may
access the instruction ROM or the instruction cache without
any involvement from TPM firmware.

[0145] As represented by block 618, when the address is
an internal address, the instruction ROM returns the
requested instruction in the next cycle. In addition, in some
embodiments the instruction ROM also returns security
assurance logic (“SAL”) bits. The SAL bits may be used to
prevent an attacker from jumping the program counter of the
processor without being detected.

[0146] As represented by block 620, if the requested code
is stored in the external flash memory, the instruction
multiplexer requests the information from the instruction
cache controller. If at block 622 the code is in the instruction
cache (a cache “hit”), the instruction cache controller returns
the code to the instruction multiplexer in the next cycle.

[0147] In some embodiments the program counter assur-
ance logic may be disabled when operating out of the
instruction cache. For example, the SAL bits may be set high
when returning data from the instruction cache.

May 18, 2006

[0148] As represented by block 624, if the code is not in
the instruction cache (a cache “miss™), the instruction mul-
tiplexer stalls the processor while the instruction cache
controller retrieves the code from the flash memory. The
instruction cache controller issues a request to the flash
controller to retrieve the block or blocks of data from the
flash memory that contain the external code.

[0149] Upon receipt of the requested block(s) the crypto-
graphic processor(s) 334 use the instruction cache keys (e.g.,
3DES and HMAC-SHAL1 keys) to decrypt and authenticate
the block(s) of data. If the authentication is successful, the
instruction cache controller stores the block(s) of data in the
instruction cache and the cache line is marked as valid. The
instruction cache controller returns the requested code to the
instruction multiplexer and the instruction multiplexer ter-
minates the processor stall.

[0150] In some embodiments if authentication fails, the
instruction cache may raise an error signal. When this signal
is raised, the TPM is reset. After reset, the boot routine
generates an error response for any interrupted command
and the TPM enters failure mode. The exception handler
places the TPM in a failure mode until the next reboot. In
this mode, secure code stored in external flash may not be
accessed.

[0151] As represented by block 626, after the instruction
multiplexer receives the requested code, the instruction
multiplexer returns the code to the processor via the instruc-
tion bus. The processor is thus able to execute the instruction
associated with the appropriate (e.g., original, modified or
new) function.

[0152] FIG. 9 illustrates one embodiment of how data
may be decrypted and authenticated in the system. As
discussed herein, the secure code may be encrypted and an
authentication digest over the secure code may be generated
before the secure code is stored in external memory. The
block 902 on the left side of FIG. 9 represents the secure
code and authentication information that is stored in the
flash memory. The block 904 on the right side of FIG. 9
illustrates the various parameters that are used to decrypt
and authenticate the secure code.

[0153] The secure code 906 and the code authentication
908 may be stored as represented in FIG. 3 in the secure
code location 336 and in the secure code authentication
location 344, respectively, in the external flash 306. In some
embodiments the secure code 906 comprises a set of secure
code blocks (e.g., blocks 0, 1, 2, etc.) and the code authen-
tication code comprises a set of corresponding code authen-
tication blocks (e.g., blocks 0, 1, 2, etc.). As shown in FIG.
9, the secure code blocks and their corresponding HMACs
each may be stored contiguously in separate memory blocks
in memory.

[0154] In the example of FIG. 9 an initialization vector
(“IV”) 926 begins 8 bytes before the start of the secure code
block. In some embodiments the IV for the first code block
is stored in the flash memory. This IV may be generated by
a random number generator (not shown) that may be one of
the secure code components. The IV for subsequent code
blocks may be, for example, the last 8 bytes of the previous
encrypted block. This association is represented by the line
912 in FIG. 9.



