US 2006/0107032 Al

[0155] In some embodiments the decryption algorithm
(e.g., 3DES) is performed over the fields represented by line
920, namely, the 3DES IV 926 and the secure code 928.

[0156] In some embodiments the authentication (e.g.,
HMAC-SHA1) may be performed over the fields repre-
sented by line 918: {a 4 byte firmwareHash 922| a 4 byte
logical address 924| an 8 byte IV 926| a 256 byte secure code
block 928}. The line 914 represents that the secure code
from the memory 902 is provided to the cryptographic
operations. The firmware hash field 922 from the secure
code descriptor prevents an attacker from mixing secure
code blocks from different secure code load revisions. The
4 byte logical address 924 points to the base address of the
256 byte block and may be used to determine whether an
attacker has moved any of the code blocks in the flash
memory.

[0157] As represented by line 916, the authentication
generated as a result of the HMAC-SHA1 operation over the
fields 918 is verified against the code authentication 908 for
the corresponding 256 byte block stored in the flash
memory. After successful authentication, the cache line may
be marked as valid and the data may be returned to the
instruction multiplexer block. On a failure, the cache line
may be marked as invalid and the instruction cache control-
ler may raise an error signal to the instruction multiplexer.

[0158] Referring now to FIGS. 7 and 8, one embodiment
of operations that may be performed to update secure code
will be discussed. FIG. 7 relates to operations that may be
performed by, for example, a manufacturer to create and
deliver new code to a target system (e.g., a TPM) that has
been installed in the field. FIG. 8 relates to operations that
may be performed by the target system (hereafter referred to
for convenience as the TPM) to install the new code.

[0159] At block 702 in FIG. 7 the manufacturer creates
any new functions that are needed and modifies any func-
tions that need to be changed. Typically, this will involve a
programmer rewriting a portion of the last release of the
code and/or adding new sections to that code. As the
instruction ROM code and the on-chip function table stored
in a masked instruction ROM may not be modified after the
TPM has been taped-out (as part of the integrated circuit
design and manufacturing process), any changes to the code
are stored in the flash memory. However, since there may be
significant overhead associated with fetching data (e.g.,
code) from flash memory it may be desirable to store as
much of the code in on-chip ROM as possible.

[0160] To modify code, an entire function may be
replaced. Depending on whether code has been previously
loaded into the flash memory, modifying a function may
involve creating a modified version of an original function
(e.g., one stored in an internal memory) or modifying a
function that was previously loaded into the flash memory.
In some embodiments the only functions that cannot be
replaced are secure code functions and low-level functions
that access the flash.

[0161] In some embodiments the guidelines that follow
may be used to more effectively update the code. First,
existing global structures may not be modified. Since global
structures may be used by multiple functions any change in
the global structures may cause a large number of functions
to be updated. Second, fields may be added to the end of

May 18, 2006

volatile structures. Adding fields to the end of volatile
structures may cause the heap pointer to be moved at boot.
Third, memory may be allocated for adding fields to non-
volatile structures.

[0162] At block 704 the compiler generates the machine
code that will be stored in the external memory. Here, the
compiler may determine which functions have changed or
have been added. For example, a script (e.g., provided as an
extension of the compiler) may compare (e.g., perform a
“diff” operation) the newly compiled code with a previously
saved copy of the prior version of the code. In some
embodiments, the compiler may advantageously be config-
ured to compile only the new and/or modified code.

[0163] As represented by block 706, the order of functions
stored in flash memory is determined. The order of the
functions may be determined, for example, by the program-
mer or automatically by the compiler. In some embodiments
functions are ordered to maximize locality. The order of
functions in the original flash function table is not changed.

[0164] As represented by block 708, the code may be
defined and/or modified to support function calls to code
stored in either the internal memory or the external memory.
This may be accomplished as discussed herein. For example,
a script may be defined that searches the code for a specific
type of function call and re-rewrites that function call to
support a table offset variable.

[0165] As represented by block 710 the manufacturer
generates a new external function table that contains, for
example, function pointers for each function. Again, this
may be performed by a script (e.g., an extension of the
compiler). For any original functions that have not been
modified, the function table points to the internal memory.
For any modified version of an original function or any new
function, the flash function table points to the external
memory. In the latter case, the corresponding function
pointers are either modified or added in the external flash
function table.

[0166] As represented by block 712, the system also
generates information for a new flash secure code descriptor.
As discussed above, this information may include, for
example, a version number and a verification key.

[0167] As represented by block 714, the secure environ-
ment (e.g., a FIPS level 3 environment such as a hardware
security module as discussed in conjunction with FIG. 1)
may generate a new verification key (and optionally a new
decryption key) for the TPM. Replacing the public verifi-
cation key allows the manufacturer to prevent older secure
code loads from replacing the latest firmware revision. In
addition, if the private signing key is ever compromised, this
mechanism allows the manufacturer to release a secure code
image with a new signing/verification key. The new public
keys may be provided to the TPM by incorporating them
into the new secure code descriptor.

[0168] As represented by block 716, the compiled code
may be sent to the secure environment. Here, cryptographic
processor(s) in the secure environment may use the private
verification key (and optionally the private encryption key)
to cryptographically sign (and optionally encrypt) the secure
code information. As discussed herein, the private key
corresponds to a public key maintained by the TPM. The
secure code information may include, for example, the

