US 2006/0107032 Al

secure code descriptor, the flash function table, any flash
read-only data, and the compiled secure code.

[0169] Inthe eventanew verification key has been created
at block 714, the above information may still be signed using
the prior version of the verification key. In this case the TPM
will continue to use the prior version of the verification key
until the new verification key has been successfully loaded
into the TPM. In some embodiments signing is performed
using the RSASSA-PKCS1-v1.5 algorithm.

[0170] As represented by block 718, after the secure
environment returns the signed (and optionally encrypted)
secure code information, the manufacturer sends this secure
code information to the TPM. In some embodiments the
process of sending code, etc. to the TPM involves invoking
one or more commands. For example, the TPM field upgrade
process may be divided into several parts. The first part
(information request) may relate to obtaining all necessary
information to do an appropriate update. Other parts
(upgrade start and update) may relate to commencing and
performing the transfer of the secure code information to the
TPM. Another part (upgrade complete) may relate to com-
pleting the transfer.

[0171] These commands may be invoked, for example, by
the manufacturer’s processing system. The manufacturer’s
system may communicate with the TPM via an external
interface 210 as shown in FIG. 2. In the illustrated embodi-
ment, the commands are received by the host processing
component 208 which sends the commands to the TPM via
the bus 214 (e.g., an LPC bus). One embodiment of these
commands and a process for updating code, etc., in response
to these commands will be discussed in conjunction with
FIG. 8.

[0172] Before the manufacturer initiates the transfer of the
new code, the manufacturer’s system may invoke a com-
mand to request field upgrade information that may be
needed to invoke and complete the transfer. This capability
may be used to obtain all relevant information about the
TPM chip so that the caller can start the upgrade process. For
example, this command may provide information about the
chip revision, the current version of the verification key and
any currently loaded firmware. Also, this command may be
used to determine whether new secure code information
needs to be loaded into the TPM. This command may be
called under normal operating conditions and may not
require owner authorization.

[0173] As represented by block 802, the TPM thus
receives an upgrade information request. At block 804, the
TPM returns selected information in response to this
request. This information may include, for example, the
version of the upgrade information structure and a firmware
valid field that indicates that the firmware is valid.

[0174] In some embodiments this information may
include a flag that indicates the TPM currently has an owner
and an ownerAuthReq field that indicates that owner autho-
rization is required. Owner authorization may be required
when the TPM encryption key (EK) has been programmed
or when the ownerAuthReq bit in the secure code descrip-
tors is set.

[0175] The returned information also may include version
numbers (e.g., relating to the TCPA main specification, the
LPC bus and the signature key), the most-significant 4 bytes

May 18, 2006

of the SHA1 hash over the firmware stored in external flash,
and the maximum data size which may be sent to the TPM
by the upgrade update and upgrade complete commands.

[0176] After the manufacturer receives the necessary
information to initiate the transfer of the secure code infor-
mation, it sends an upgrade start command to the TPM. This
command starts the upgrade process by providing a new
secure code descriptor to the TPM. Owner authorization
may be required if the EK has been generated.

[0177] The upgrade start command may include, for
example, the size of the secure code descriptor, the secure
code descriptor and a signature (e.g., a RSASSA-PKCSI1-
v1.5 2048 b signature) calculated over the secure code
descriptor and the authorization digest for returned param-
eters.

[0178] As represented by block 806 once the TPM
receives this command, it may verify various aspects of the
command. For example, the TPM may verify that authori-
zation is required when the EK has been generated. If
authorization is required, the TPM may use the authorization
protocol to verify that the command was sent by the owner.

[0179] In some embodiments the TPM may verify a sig-
nature over any received data (e.g., the new functions and
function table). By using the cryptographic public key
obtained from a trusted source as discussed above, the
system may be assured that the data came from the trusted
source (e.g., the holder of the corresponding private key) and
that the data has not been compromised.

[0180] Initially, the TPM verifies the signature of the new
secure code descriptor (block 808). If a valid secure code
descriptor was read from the flash memory at boot the TPM
uses the public verification key stored in flash memory. If a
valid secure code descriptor was not read from the flash
memory at boot the TPM uses the public verification key
stored in the internal ROM.

[0181] As represented by block 810 the TPM temporarily
deactivates the TPM. The system may then ensure that the
device only executes code from the internal memory. For
example, the system may set the processor register r28 to
point to the on-chip function pointer table.

[0182] The system may then update and save the old
secure code descriptor in preparation for writing the new
secure code descriptor to the flash memory. The system sets
the volatile secureCode field to false. The system also copies
the new secure code descriptor to non-volatile memory. To
update the old secure code descriptor, the system may clear
the firmwarel.oaded field, generate a new IV and encrypt
and authenticate the descriptor with the flash 3DES and
HMAC-SHAL keys. The system then writes the old secure
code descriptor back to the flash memory.

[0183] The secure code descriptor may be double-buffered
in the external flash. This may guarantee that the flash secure
code descriptor is not corrupted on a failing write. One
embodiment of such double-buffering is discussed below.

[0184] As represented by block 812, the TPM opens a
thread that calculates a SHA-1 digest over the received
secure code information. Accordingly, the TPM initially
incorporates the new secure code descriptor into the digest.
The TPM also may clear the counter that keeps track of the
number of 256 bytes secure code blocks.



