US 2005/0021537 Al

TABLE 6-continued

SCOL__ QUERY definition

Field Name Key Description

PROVIDER_CLASS The name of the corresponding query

provider class

[0074] As stated previously, architecture 38 includes six
service provider classes (i.e., transaction 40, query 32,
aspect 34, action 44, query relation 46, and locking 42) for
handling requests from front end application program 12,
other than requesting meta data from repository 18, which is
handled by repository service provider class 30. To provide
services upon request by front end application program 12,
service manager 16 directly calls instances of service pro-
vider classes. These instances of service provider classes can
be located on the same computer (e.g., 6) as service manager
16 or on a different computer.

[0075] The locking service provider 42 can be used to
implement a generic lock manager for a single aspect or a set
of aspects. Each locking service provider 42 needs to be
registered with an aspect. The name of the locking service
provider 42 is set in SCOL_ASPECT table in LOCKING-
_PROVIDER field for each aspect. Locking service provider
class has two methods that can be called by service manager
16. These are LOCK and UNLOCK. LOCK takes as input
a collection of keys representing business objects to be
locked, a name of an aspect representing a class of the
business objects, and a lock mode. There are various locking
modes depending on the locking capability of the target
system. Locking mode can specify “E”, “S”, or “SP”. “E”
means an exclusive lock or that only one client can obtain
the lock. “S” means a shared lock indicating that any clients
can lock and no lock exclusive to one client is possible. “SP”
means the same as “S” but a subsequent upgrade to an
exclusive lock is possible.

[0076] TLOCK method outputs a Boolean value indicating
if the request is rejected or not and also outputs a return
code. UNLOCK takes as input a collection of keys repre-
senting business objects to be unlocked and a name of an
aspect representing a class of the business objects to be
unlocked. UNLOCK method also outputs a Boolean value
indicating if the request is rejected or not and a return code.
A call to UNLOCK is rejected if a transactional buffer is
already in a “dirty” state, i.e. if any update, insert, delete
operation or an action that is not marked as COL_AF-
FECTS_NOTHING has been issued since the last
CLEANUP call. All locks are removed if the CLEANUP
method (described below) of the transaction service provider
class is called with reason ‘END’.

[0077] A transaction is a sequence of information
exchange and related work (such as database updating) that
is treated as a unit for the purposes of satisfying a request
from front end application program 12 to service manager
16 and for ensuring integrity of backend database 24. For a
transaction to be completed and changes to database 24 to be
made permanent, a transaction has to be completed in its
entirety. All of the steps of a transaction are completed
before the transaction is successful and the database is
actually modified to reflect all of the requested changes. If

Jan. 27, 2005

something happens before the transaction is successfully
completed, any changes to the backend database 24 must be
kept track of so that the changes can be undone.

[0078] To handle transactions, the transaction service pro-
vider 40 receives notifications on the various states of a
transaction between service manager 16, another non-trans-
action service provider (e.g., 32, 34, 44, 46), and front end
application program 12 (or service manager proxy 14 in
some cases). These notifications are the transaction service
provider 40’s methods BEFORE_SAVE, CLEANUP, and
SAVE that are called by the service manager 16 during
transactions.

[0079] The service manager 16 calls the transaction ser-
vice provider 40’s method BEFORE_SAVE to check if the
transactional buffer can be saved. This allows checking if the
internal state of the non-transaction service provider is ready
for being saved. The method BEFORE_SAVE returns falso
if it is not possible to save the transactional buffer, then the
transaction end is aborted. Thus, the BEFORE_SAVE
method has a BOOLEAN return parameter. BEFOR-
E_SAVE takes a Boolean as an input parameter REJECTED.
The transactional service provider 16 can prevent the fol-
lowing save and commit operations by setting the
REJECTED parameter to a non-initial value, i.e. to “true”.
The method BEFORE_SAVE is called within the service
manager’s 16’s sequence of operations triggered by the
front-end application 12’s SAVE method.

[0080] The SAVE method finally triggers the application
to save the transactional buffer to the database 24. By calling
SAVE, all internal states of a non-transaction service pro-
vider are made persistent—either by direct updates or by
creating appropriate calls to the update task. If all service
providers in architecture 38 have received a SAVE request,
service manager 16 commits the transaction.

[0081] The CLEANUP method tells all non-transaction
service providers to release all their transactional buffers and
enqueue-based locks. Calling CLEANUP method commu-
nicates that all service providers in architecture 38 need to
clean up their internal state. CLEANUP takes a REASON
string as an input parameter. The REASON field indicates
the reason for the clean up operation. This can be either a
‘COMMIT’ due to a SAVE-operation or the ‘END’ of the
transaction due to the system closing the transaction auto-
matically. There is no guarantee that cleanup is called under
failure conditions.

[0082] The action service provider 44 is called by service
manager 16 to execute an action for an aspect. The name of
action service provider 44 is set in the PROVIDER_CLASS
field of SCOL_ASP_ACTION table for a row corresponding
to an action. Action service provider 44 has one method
EXECUTE. EXECUTE method takes as input parameters
an aspect name (ASPECT), a sct of keys (INKEYS) speci-
fying which instances of the aspect are acted upon by the
action, a generic input parameter (INPARAM), the name of
the action (ACTION) to be executed, a set of keys (RELA-
TION_INKEY) for an action acting on an relation, and a
name of the relation (RELATION). EXECUTE method
returns as output parameters the changed or newly created
objects (OUTRECORDS), which have been modified by the
action. The objects returned by the OUTRECORDS param-
eter are transported to application program 12.

[0083] The aspect service provider 34 is called by service
manager 16 to provide functionality to read and modity the

