US 2005/0021537 Al

specified including a structure describing various options
(OPTIONS) of the queries (e.g., for paging) and SELEC-
TIONS.

[0092] Parameters returned by EXECUTE method include
a description (DESCRIPTION) of the query, the query result
(OUTRECORDS), and a Boolean flag (REJECTED) indi-
cating if the request for the EXECUTE method was rejected
or not

[0093] The EXECUTE method returns the results speci-
fied by the query parameters. If the INKEYS table parameter
is not empty, the result is restricted to the objects that fulfill
the query parameters. INKEYS and INPARAM both restrict
the query, but are used in different ways. For example, a
query can be defined that returns a list of orders not yet
delivered. In such an example, the structure INPARAM can
specify that only orders from customers with last names
from A-D are to be returned. The INKEYS is a table of all
orders that have not yet been delivered. OUTRECORDS
contains all orders from the relevant customers, in this case
with last names A-D, that have not been delivered yet. In one
example, the OUTRECORDS result of a query is a discon-
nected aspect, that is, the aspect is always read-only. No
further backend operations can be performed on this aspect.
In this example, the received keys can be used as parameters
to select other aspect rows using the aspect service provider
34 and, for example, its SELECT method.

[0094] The query relation service provider 46 implements
a routine in a service provider (e.g., aspect service provider
34) for an aspect that is the target of a relation. Methods of
query relation service provider 46 are indirectly called from
the aspect service provider 34 of the source aspect, if the
relation is marked as SOURCE_KEYS or ATTRIBUTES.

[0095] Query relation service provider 46 has a SELECT-
_TARGET method. The method SELECT_TARGET has
input parameters as follows. Input parameters include the
name (SOURCE_ASPECT) of the source aspect. Option-
ally, the method also includes an input parameter defining a
proxy interface (TARGET) to the target aspect’s SELECT
method. Specifying the TARGET parameter allows calling
the SELECT method of the aspect service provider 34 for
the target aspect without directly knowing the aspect service
provider 34 for the target aspect. This enables a query
relation service provider 46 to be added to a service module
without knowledge of the aspect service provider 34 for the
target aspect.

[0096] Another input parameter for the SELECT_TAR-
GET method is the relation (RELATION). Another input
parameter is a table of fields (INPARAMS) to describe the
relation. To allow mass selection, INPARAMS is a table
where every row describes a single selection. An INDEX
parameter is used to relate the various rows of the
INPARAMS structure to the OUTRECORDS rows. Another
optional input parameter is a structure (OPTIONS) describ-
ing various options of the queries (e.g., for paging).

[0097] The SELECT TARGET method returns param-
eters that include the result encoded with the structure of the
target aspect (OUTRECORDS), a description of the query
result (DESCRIPTION), and a proxy interface to the target
aspects SELECT method. Other output parameters include
an index (INDEX) to describe the relation between the
IPARAMS records and the OUTRECORDS parameter, a

Jan. 27, 2005

Boolean flag (REJECTED) indicating if the request for the
SELECT_TARGET method was rejected or not and return
codes (RETURN_CODES).

[0098] The service providers 32, 34, 40, 42, 44, and 46, as
described above, enable the following transactional model
for the architecture 38. Executing method SELECT of aspect
service provider 34 reads from the backend database 24 or
reads from a transactional buffer stored in the back-end.
Aspect service provider 34 merges data from both sources—
the database and its transactional buffer—in a consistent
way so that the merge data reflects the updates made so far
in this transaction. Next, executing UPDATE, INSERT,
MODIFY, or DELETE methods of aspect service provider
34 builds up a transactional buffer. Before actually changing
data in the transactional buffer, the service manager 16 has
to acquire a transactional lock on the data and read the data
under the protection of a lock. There are exclusive, shared,
and shared promotable lock modes available using locking
service provider 42 as described previously. Locking has to
be accompanied by selecting the locked data again under the
protection of the lock. Applications can support optimistic
locking by providing time-stamped or otherwise versioned
data, and merging actual and modified data on the front-end
in case of conflicts.

[0099] The BEFORE_SAVE method of the transaction
service provider 40 enables all participating service provid-
ers to declare if they are ready for saving the transactional
buffer. The SAVE method of the transaction service provider
40 finally triggers service manager 16 to save the transac-
tional buffer to the backend database 24.

[0100] The CLEANUP method of the transaction service
provider 40 notifies all service providers (e.g., aspect service
provider 34) to release all their transactional buffers and
enqueue-based locks. If CLEANUP is called with reason
‘END’, all locks have to be released. If reason is set to
‘COMMIT’, each service provider can chose to keep its
locks. Aspect service provider 34 must not call COMMIT
WORK or ROLLBACK WORK internally on its own. The
service manager 16 enforces this by automatically aborting
the transaction if aspect service provider 34 is trying to
commit a transaction.

[0101] The supported locking models and lock policies are
as follows. Using policy S, many participants can obtain a
shared lock. If a shared lock is obtained on an object, no
exclusive lock or SP lock can be obtained. Shared locks can
only be used to achieve a consistent view on a larger set of
data during read operations. Using policy E, only a single
participant can obtain a lock. Using policy SP (shared
promotable), many participants can obtain the lock. If a SP
lock exists, exclusive locks can only be obtained by partici-
pants already having a SP lock on the object. Only one of the
participants can upgrade the lock to an exclusive lock. No
other participant, who did obtain a lock prior to the upgrade,
can upgrade to exclusive even if the first participant did
release its lock.

EXAMPLE

[0102] The architecture 38 (of FIG. 3) implements a
simple task of creating a new customer, receiving the
customer’s order of one or more products via GUI 28 and
submitting the order to a business process. To support this
example, backend database 24 can be implemented using a



