US 2005/0021537 Al

action includes a name of the specialized action, a name of
a data structure for input data for the specialized action, and
a name of the collection of data elements. The set of
operations correspond to methods of a service provider
class. In some cases, the set of operations includes select,
delete, select by relation, and update operations.

[0012] Embodiments may include one or more of the
following. The repository further includes descriptions of
relations between pairs of collections of data elements. The
first collection has a relation with a second collection of data
elements, a description of the relation is stored in the
repository, and the relation enables the client program to
request the retrieval of data elements of the second collec-
tion by specifying data elements of the first collection. The
repository is a database. Executing the first operation
includes reading the one or more of the attributes of the first
collection of data elements from memory storage and send-
ing the attributes to the client program. In some cases,
executing the first operation further includes calculating the
one or more of the attributes of the collection of data
elements and sending the attributes to the software entity.

[0013] Embodiments may include one or more of the
following. A description of a collection and common
attributes for the collection includes a name of the collection
and a description of a data structure defining the attributes.
The first operation is a query and executing the first opera-
tion further includes searching for individual data elements
within the first collection and returning keys representing the
individual data elements. In some cases, the repository
includes a definition of the query that includes a search
parameter structure of the query and an input name defining
a key that is used for filtering one or more data from the
collection of data. The system further includes enabling the
client program to request a service represented in the reposi-
tory, the service representing the first operation on one or
more data elements in a second collection from the collec-
tions, and executing the first operation on the one or more
data elements in the second collection.

[0014] These and other embodiments may have one or
more of the following advantages. There can be independent
software lifecycles for service providers and service con-
sumers. Services provided by a service-based software
architecture can be reused for different situations. Generic
engines in the software architecture can combine services
for new applications.

[0015] The details of one or more implementations of the
invention are set forth in the accompanying drawings and
the description below. Further features, embodiments, and
advantages of the invention will become apparent from the
description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] FIG. 1 is a block diagram of an example logical
representation of a business software application.

[0017] FIG. 2 is a view of a network configuration for a
business software application.

[0018] FIG. 3 is a block diagram of the business software
application of FIG. 1.

[0019] FIG. 4 is a Unified Modeling Language (UML)
representation of a structure of a meta model repository.

Jan. 27, 2005

[0020]

[0021] FIG. 6 is a diagram showing relations between
different aspects for a business software application.

FIG. 5§ is a flow diagram of a business process.

DETAILED DESCRIPTION

[0022] FIG. 1 illustrates an overview logical representa-
tion of a business software architecture 2, which includes a
client 3, a separation layer 5, a repository 7 and backend data
9 and 9'. Client 3 provides a user interface (UI) that enables
a user to interact with the backend data 9 and/or 9'. Backend
data 9 and 9' can be associated with different backend
applications and/or can be arranged and formatted differ-
ently from each other. Separation layer 5 separates the front
end user interface provided by client 3 from the back end
data 9 and 9'. This separation enables client 3 to interact with
backend data 9 and 9' in a consistent and similar manner,
regardless of the formatting or application-associated dif-
ferences between backend data 9 and 9'. In other words,
separation layer 5 provides a canonical interface to backend
data 9 and 9' so that client 3 is configured to interact with
separation layer 5 and only needs to be updated if separation
layer 5 changes. Changes to backend data 9 and 9' do not
necessitate an update to client 3. Further, separation layer 5
is scalable and configured to handle changes and growth to
backend data 9 and 9' and any other disparate backend data
and backend services that are further connected to separation
layer 5.

[0023] As described in more detail below, separation layer
5 is based on a meta model that defines how backend data
(e.g., 9 and 9" are represented in separation layer 5. Meta
data is stored in repository 7 that describes how the backend
data 9 and 9' fit into the meta model representation. Client
3 interacts with backend data 9 and 9' using a generic
command set defined by separation layer 5. As described in
more detail below, separation layer 5 accesses service pro-
viders that perform the generic commands from client 3,
using the meta data in repository 7, to effect the requested
manipulation of backend data 9 and 9'. The service providers
are configurable so that different service providers can be
used for different backend data 9 and 9'. Separation layer 5
includes an interface (e.g., a service manager) that hides the
characteristics of the corresponding backend data 9 and 9'
and also the granularity and distribution of the implemen-
tation (i.e., the service providers).

[0024] FIG. 2 illustrates an example implementation of
the business software architecture 2. As shown in FIG. 2, the
business software architecture 2 includes a first computer 4
and a second computer 6. The computers 4 and 6 each can
include a processor, a random access memory (RAM), a
program memory (for example, a writable read-only
memory (ROM) such as a flash ROM), a hard drive con-
troller, a video controller, and an input/output (I/O) control-
ler coupled by a processor (CPU) bus. The computers 4 and
6 can be preprogrammed, in ROM, for example, or the
computers 4, 6 can be programmed (and reprogrammed) by
loading a program from another source (for example, from
a floppy disk, a CD-ROM, or another computer) into a RAM
for execution by the processor. The hard drive controller is
coupled to a hard disk suitable for storing executable com-
puter programs, including programs embodying the present
invention, and data. The I/O controller is coupled by an I/O
bus to an I/O interface. The I/O interface receives and



