US 2006/0259637 Al

adapters may, in turn, comprise processing elements and/or
logic circuitry configured to manipulate these data struc-
tures. According to an illustrative embodiment, mbufs stored
in the buffer cache 255 may contain one or more data
streams that may be requested by the plurality of clients 120.

[0038] The network adapter 220 sends and receives data
to/from other nodes in the network 100, e.g., over an
Ethernet link, a synchronous optical network (SONET) link,
a wireless connection, etc. Specifically, the network adapter
comprises the mechanical, electrical and signaling circuitry
needed to connect the streaming media cache 200 to a client
120 over the computer network 100. The adapter may also
include specialized processing elements, such as logic or
processors that format in-coming and out-going packets
consistent with a predetermined network communication
protocol. The network adapter may be implemented by
components and circuitry on a network interface card (NIC),
as known in the art.

[0039] The storage adapter 260 cooperates with the oper-
ating system 300 to access client-requested data streams
stored on the disks 270. The storage disks (or other storage
devices) are attached, via the storage adapter 260, to the
streaming media cache 200. The storage adapter includes
input/output (I/0) interface circuitry that couples to the disks
over an I/O interconnect arrangement, such as a conven-
tional high-performance, Fibre Channel serial link topology.
The client-requested data streams are retrieved by the stor-
age adapter and processed by the processor 230 (or the
adapter 260 itself) in accordance with the storage operating
system 300. The data streams are then forwarded over the
system bus 210 to the network adapter 220, where they are
formatted into packets and sent to their requesting clients
120.

[0040] FIG. 3 is a schematic block diagram illustrating the
exemplary storage operating system 300, which may repre-
sent the streaming media cache 200. The operating system
communicates with the network 100 through a series of
software layers, which are organized as a network protocol
engine 310. The layers of the network protocol engine 310
process network headers appended to data packets transmit-
ted and received to/from the network. For example, the
engine 310 may comprise a data link layer, an IP layer, a
TCP/UDP layer, and so forth.

[0041] According to the illustrative embodiment, the net-
work protocol engine 310 associates a unique “port” number
with each streaming media protocol, such as the RTSP or the
MMS protocol, that may be processed by the streaming
media cache 200. The engine 310 identifies a received data
packet as being formatted according to a particular stream-
ing media protocol when a port number stored in a desig-
nated header of the received packet equals the port number
associated with the protocol. For example, if the RTSP and
MMS protocols are respectively associated with TCP port
numbers 554 and 1755, then the 310 identifies data packets
addressed to TCP port number 554 as RTSP data packets,
whereas packets addressed to TCP port number 1755 are
identified as MMS data packets. Those skilled in the art will
appreciate that the port number identifying the streaming
media protocol need not be associated with a TCP port and
may be, e.g., a UDP port number instead. Furthermore, as
mentioned above, the RTSP and MMS requests may be
identified by a respective “mms” or “rtsp” portion of the
request URL.

Nov. 16, 2006

[0042] When the network protocol engine 310 identifies
that a received data packet is addressed to a port number
associated with a streaming media protocol, the packet is
passed from the engine 310 to the protocol’s corresponding
streaming media protocol engine 330. For example, a packet
addressed to TCP port 554 may be passed from the network
protocol engine 310 to an RTSP protocol engine. Each
streaming media protocol engine 330 is configured to pro-
cess data packets formatted in accordance with its corre-
sponding streaming media protocol. For instance, the RTSP
protocol engine processes data packets containing RTSP
requests for a data stream (e.g., requests to PLAY, PAUSE,
or RECORD the stream).

[0043] The streaming media protocol engines 330 are
interfaced with a packet pacing sub-system (SMPACER)
320 and a streaming media disk sub-system (SMDISK) 340.
The SMDISK sub-system, which may also be referred to as
a streaming media persistent storage sub-system, receives
instructions from the streaming media protocol engines to
write and retrieve data packets to/from the storage devices
270. To that end, SMDISK sub-system 340 issues functional
calls to a file system layer 350, which writes or retrieves data
to/from the storage devices through a storage access engine
360. The storage access engine 360 comprises a series of
software layers that facilitate data transfers between the file
system and the storage devices. For instance, these layers
may include, e.g., a disk storage layer to manage a redundant
array of independent disks (RAID), a disk driver layer to
manage communications over a small computer system
interface (SCSI), and so forth.

[0044] The SMDISK sub-system is preferably configured
to process data packets that are stored in one or more
memory buffers (mbufs), e.g., located in the buffer cache
255. Accordingly, the SMDISK sub-system 340 may pass
mbuf pointers referencing the data packets to other layers in
the storage operating system 300. For example, the
SMDISK sub-system may forward mbuf pointers referenc-
ing data packets retrieved from the storage devices 270 to
the SMPACER sub-system. Similarly, the SMDISK sub-
system may receive mbuf pointers corresponding to data
packets received by the network protocol engine 310.

[0045] The SMPACER sub-system 320 is responsible for
determining the rate at which data packets are sent from the
streaming media cache 200 to their requesting clients 120. In
one embodiment, the SMPACER sub-system 320 waits to
receive a predetermined number of mbuf pointers referenc-
ing packets of a client-requested data stream. Once the
predetermined number of mbuf pointers has been received
(or, optionally, once a predetermined period of time has
elapsed), the SMPACER sub-system 320 makes a “call-
back” (i.e., a function call) to an appropriate streaming
media protocol engine 330, which returns a “delivery time”
that defines when a copy of the data packet should be
transmitted to its requesting client. The choice of which
streaming media protocol engine 330 is called by the
SMPACER sub-system depends on which streaming media
protocol, e.g., RTSP or MMS protocol, is used by the
requesting client. For instance, SMPACER 330 makes a
call-back to an MMS protocol engine when the requesting
client is configured to communicate via the MMS protocol.

[0046] FIG. 4 illustrates a method 400 for unified caching
of media content, according to one embodiment of the



