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[0074] The message m is provided as input to a translation
function g. The translation function g translates the message
m into a codeword ¢ in codeword space 20. The translation
function g represents a one-to-one mapping of a message m
from message space 10 to a codeword ¢ in codeword space
20. Accordingly, for each message m, there is one corre-
sponding codeword c. An error-correcting code for use with
a binary set of messages M that are k-bits in length contains
a set of codewords C including 2* codewords since there is
one codeword ¢ for each of the 2* messages. The operation
of the translation function g can be described mathemati-
cally as g: M—C. The set of codewords C in codeword space

20 may be described mathematically as CS{0, 1}" where
each codeword c in the set of codewords C is a binary n-bit
string. Generally, the message m is different from codeword
c at least because codeword ¢ contains redundant elements.
If a codeword ¢ contains redundant elements, the length of
the codeword c bit string n will be greater than the length of
the message m bit string k.

[0075] The codeword c is transmitted 30 over a commu-
nication channel. Noise 35 may be introduced during trans-
mission 30 so that a corrupted codeword 1, which is gener-
ally some variation of codeword c, is received at the
receiving end of the communication channel. The corrupted
codeword 1is provided as input to a decoding function f. The
decoding function f reconstructs the codeword ¢ from the
corrupted codeword i. The redundant elements of the code-
word ¢ allow the decoding function to perform this recon-
struction.

[0076] The decoding function f maps a corrupted code-
word 1 to a codeword c in the set of codewords C. A
corrupted codeword i may be an arbitrary n-bit binary string.
When the decoding function f is successful, it maps a
corrupted codeword i to the nearest codeword c in the set of
codewords C. In this context, the nearest codeword c¢ is the
codeword c that is the closest by an appropriate metric from
the corrupted codeword.

[0077] The task of mapping an arbitrary string to its
nearest codeword is known as the maximum likelihood
decoding problem. Practical classes of codes with polyno-
mial-time solutions to this broad problem are at present
unknown. Conventional decoding functions perform a more
limited task in that they successfully decode any word that
lies within a certain radius of some codeword. Such decod-
ing functions can be used in embodiments described herein.

[0078] Generally, when a decoding function f fails, it
outputs ¢. (Some error correcting codes may operate some-
what differently. For example, list decoding functions f yield
a set of candidate codewords, rather than a single correct
one. The underlying principles remain the same in such
settings.) The operation of the decoding function f can be
described mathematically as f: {0, 1 }"—=CU{¢}. The
reverse translation function g is used upon receipt of a
reconstructed codeword ¢ to retrieve the original message m.

[0079] The robustness of an error-correcting code depends
on the minimum distance of the code. In this description,
Hamming distance and Hamming weight will be used as an
example of a way to measure the minimum distance of a
binary block code. If the Hamming weight of an n-bit binary
string u is defined to be the number of ‘1° bits in u and the
Hamming weight of an n-bit string u is denoted by |[u ||, then
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the Hamming distance between two binary bit-strings u and
v is defined to be the number of bits in which the two strings
differ. The Hamming distance between two binary bit-strings
u and v is denoted by [[udv]|.

[0080] The minimum distance of a convolution code is
defined without reference to Hamming distance or Hamming
weight. The use of Hamming distance or Hamming weight
as an example here does not indicate any intent to limit an
embodiment to these metrics as the only appropriate metrics
of the minimum distance of an error-correcting code.
Another metric for a set of sequences whose elements are
nonbinary, for example, would be the oo norm, a measure
of the maximum difference between elements. The Lo
difference between the sequence u={3, 4, 5} and the
sequence v={10, 5, 1} would be 7.

[0081] A decoding function f has a correction threshold of
size t if it can correct any set of up to t errors. In other words,
the decoding function f can successfully decode any cor-
rupted codeword 1 whose errors are less than or equal to the
correction threshold t of the decoding function. The error in
a corrupted codeword i can be described as the offset 6 from
the nearest codeword c. In a binary block code where the
Hamming weight of the corresponding offset 6 is less than
or equal to the bit correction threshold t, the decoding
function f will successfully decode a corrupted codeword i
to a codeword c in the set of codewords C. This concept is
expressed mathematically as follows: given ceC and de{0,
1} with |[3]|=t, then f(c+8)=c.

[0082] Generally, the Hamming distance between any two
codewords in the set of codewords C is greater than two
times the correction threshold (2t). If the Hamming distance
between codewords were not greater than 2t, then a cor-
rupted codeword i1 would exist that could be decoded into
more than one codeword. The neighborhood of a codeword
¢ comprises the subset of all possible corrupted codewords
that the decoding function f maps to the codeword c. The
decoding function f is generally such that any corrupted
codeword i in f(c) is closer to the codeword ¢ than to any
other codeword.

[0083] Forexample, given a message m that is one bit long
(k=1), a codeword c that is three bits long (n=3), a set of two
codewords C consisting of 000 and 111 (C={000, 111}), and
a decoding function f that computes majority, the correction
threshold t for the decoding function t equals one bit error
(t=1). The decoding function f maps a corrupted codeword
1 consisting of three binary bits to 000 if at least two bits are
0 and to 111 if at least two bits are 1. The correction
threshold t indicates that the decoding function f can correct
a single bit error because changing a single digit in either
000 or 111 does not change the majority.

[0084] The coding efficiency of an error-correcting code is
the ratio of the bit length of a message m to the bit length of
a codeword c. The coding efficiency (k/n) measures the
degree of redundancy in the error-correcting code. The
lower the coding efficiency, the more redundancy in the
codewords. The error-correcting code described in this
example has a coding efficiency of ¥5. In general, codes that
can correct a large number of errors have a low coding
efficiency.

[0085] Error-correcting codes may be defined for non-
binary spaces as well, and it is intended that the principles
described here be extended to such spaces.



