US 2002/0029341 Al

mapped to codeword c,, the location of the value x is
bounded. Clearly, the codeword c, contains a lot more
information about the location of value x in FIG. 11B than
codeword ¢ does in FIG. 11A even though the value x and
the codeword selected by the decoding function f have the
same relationship in FIG. 11A and FIG. 11B.

[0097] Returning again to FIG. 2, the security calculator
118 (FIG. 1) calculates a security value for a security
parameter based on the sequence of codewords (STEP 240).
The security of a visual password is dependent on the
codewords that are used to enroll and authenticate a user.

[0098] In one embodiment, the security parameter is
entropy. Entropy H represents the average time to guess the
secret pattern. Entropy H can be calculated with the follow-
ing equation in which a stochiastic variable P takes on the
values P,, P,, . .., P, with the probabilities py, Pos - - - » Pyt

H(P)= =" pilogp;.

[0099] Although any logarithm can be used to define
entropy, computer security applications customarily use the
base 2 logarithm so that entropy can be measured in bits. The
base 2 logarithm is used here for that reason.

[0100] In another embodiment, the security parameter is
minentropy. Minentropy H,, represents the chance of guess-
ing the secret pattern in one guess. Minentropy H,, can be
calculated with the following equation in which p , =
max;p;:

Hy(P)=-10g pray-

[0101] The comparator 120 (FIG. 1) compares the secu-
rity value for the security parameter to the threshold value
122 (STEP 250). In one such embodiment, the threshold
value for minentropy is forty to sixty bits. For comparison,
six random lower case letters represent 28 bits of minen-
tropy. If the security value does not meet or exceed the
threshold value 122, the graphical interface 112 will prompt
the user 126 to enter another secret pattern.

[0102] If the security value meets or exceed the threshold
value 122, the secret pattern will be accepted. In one such
embodiment, the enrollment process of FIG. 2 accepts a
secret pattern and saves the sequence of codewords {c,,
Cyy - - - 5 Cy} produced in STEP 230 as the visual password
for use in authenticating the user. In another such embodi-
ment, the process of FIG. 2 accepts a secret pattern and uses
the sequence of codewords {c;, ¢s, . . . , ¢,} produced in
STEP 230 to generate a cryptographic secret, which may be
regenerated later from the visual password.

[0103] In some embodiments, the enrollment device
prompts a user to train himself to remember the accepted
secret pattern. In one such embodiment, the graphical inter-
face 112 will prompt the user to enter a point by displaying
the associated image. In another embodiment, the graphical
interface displays the original discrete graphical choice
during or after the user makes a graphical choice.

[0104] Referring to FIG. 12, in one embodiment, the
graphical interface 112 displays a line 1230 between the
point 1210 in the secret pattern associated with an image and

Mar. 7, 2002

the point 1220 on the image that the user selected during the
training process. This line 1230 visually shows the user the
difference between the two points. In a similar embodiment,
the graphical interface 112 displays the line 1230 during the
training selection process.

[0105] Referring now to FIG. 13, a flowchart for an
enrollment process in accordance with another embodiment
of the invention is illustrated. STEPS 1310, 1320, and 1330
of FIG. 13 are similar to STEPS 210, 220, and 230 of FIG.
2. Additionally, an offset 8 between each value x and the
corresponding selected codeword c is calculated by an offset
calculator (STEP 1360). An offset is intended to be used
during the authentication process to enable some input
values, which would not otherwise do so, to generate the
codewords that were generated during the enrollment pro-
cess. A sequence of offsets {8, d,, . . ., 8.} is thereby
generated from the sequence of values and the sequence of
codewords. Each offset d is an n-bit string that expresses the
difference between the two n-bit strings that are a value x
and the corresponding codeword c. A value x is likewise
equivalent to the corresponding codeword ¢ and the asso-
ciated offset d, mathematically expressed as x=c+d. An
offset & may be denoted mathematically as 8e{0, 1} such
that x=c+9d. In the geometric analogy illustrated in FIG. 9,
the offset 8 between a value x and the corresponding
codeword ¢, is defined as (u-170, v+95) where u and v are
the two axes of the u-v plane.

[0106] In some embodiments of the enrollment process
that include calculating an offset d, a codeword c is selected
at random from the set of codewords associated with a
decoding function f for the value x (STEP 1330). In these
embodiments, the decoding function f is not used during the
enrollment process to decode the value into a codeword.
Instead, the calculated sequence of offsets (STEP 1360) are
used in conjunction with the decoding function f during the
authentication process to bring each input value in the
sequence of input values within the correction threshold of
the randomly selected codewords.

[0107] FIG. 10 can also be used to illustrate a geometric
analogy of an embodiment of the enrollment process that
does not involve a decoding function f. For example, the
codeword c, may be selected at random from the set of
codewords C={c,, ¢,, ¢5, ¢4} for the value x. In such an
embodiment, the fact that codeword c, is not the codeword
closest to the value x does not matter. Such embodiments
ignore the minimum distance of the error-correcting code for
the purposes of the enrollment process.

[0108] Referring again to FIG. 13, the generated sequence
of codewords is hashed by a hasher (STEP 1370). Hashing
effectively conceals the information that is hashed. In one
embodiment, the hashing is done with a one-way function,
known as a hash function h, that takes an input and produces
an output such that is impractical to figure out what input
corresponds to a given output and to find another input that
produces the same output. Known hash functions take an
arbitrary length input and produce an output of fixed length.
This process can be expressed mathematically as h: {0,
1}*—{0, 1}*. In one embodiment, the hasher may accept an
n-bit string representing one or more codewords and pro-
duce a longer 1-bit string representing the hash of the
codewords. In one embodiment, the hash function produces
a binary string with a length 1 of approximately 160 bits.



