US 2006/0143146 Al

DYNAMIC CONFIGURATION FILES

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] This invention relates to data processing systems,
methods, and computer program products, and more par-
ticularly to configuration files for data processing systems,
methods, and computer program products.

[0003] 2. Description of the Related Art

[0004] A given data processing system may be configured
in many ways. Some of the configuration options are set by
varying the hardware (e.g., number and capacity of disk
drives). Other configuration parameters are set within con-
figuration files stored by the computer.

[0005] Software programs typically use configuration files
of one kind or another to define customizable properties.
One very common configuration file format, used by “INI”
files on the Windows operating system, divides configura-
tion properties into sections, as follows:

propertyl=valuel
[section2]

propertyl=valuel
property2=value2

[0006] Configuration files are typically used because they
can be edited using a simple text editor, thereby enabling
end-users to easily make changes to them. Therefore, their
use has become pervasive in application development. Some
examples of properties that are often stored in configuration
files include user-interface related information, such as
colors, font types, font sizes, etc.; prerequisite software
locations, versions, and related information; and debug
settings.

[0007] Typical configuration files are static in nature (i.e.
properties are only simple textual strings that contain no
variables). This static nature of configuration files renders
their use sub-optimal in some circumstances. When defining
locale-specific values, multiple configuration files need to be
created when a particular property needs to vary from one
locale to the next. For example, situations arise when it is
desired to define different font-types or font-sizes depending
on the locale (e.g., a Japanese-language font versus an
English-language font). Using typical configuration files in
multi-language development, this could be accomplished by
creating separate configuration files for each locale, or
having the end-user manually update these fields to match
the settings for the desired locale. Either process (separate
configuration files or manual updating) are tedious and
time-consuming.

[0008] Another situation where the static nature of con-
figuration files is not adequate occurs when a property in one
configuration file needs to reference a second property in the
same or different configuration file. For example, many
applications define properties for directories used by an
application (e.g. where to put log files, where to find
libraries, etc.). Often these directories are located inside the
‘install’ directory by default, but are exposed to the end-user
so that these directories can be modified at a later date. Using

Jun. 29, 2006

typical configuration files, each of these dependent proper-
ties have to be defined separately, as follows:

[Paths]

installDir=C:\Program Files\My Product
logDir=C:\Program Files\My Product\logs
libDir=C:\Program Files\My Product\lib

[0009] Unfortunately, if the install location changes (e.g.,
if the install directory changes from “My Product” to “Their
Product”), each property containing the install location (e.g.,
“logs” and “lib” in the above example) must also be updated.
This can be particularly tedious if these dependent properties
are scattered throughout the configuration file, or even
defined in different configuration files.

[0010] Accordingly, it would be desirable to have the
ability to include dynamic elements in configuration files
and then resolve the variables when the configuration files
are run.

SUMMARY OF THE INVENTION

[0011] The present invention adds a dynamic nature to
configuration files so that various types of dynamic func-
tions can be performed within them. Variables are utilized
within the configuration files. Using the present invention, it
is possible to have parameters specified in one configuration
file and a formula to which the parameters will be applied in
another configuration file. This allows changing of the
values in the parameter file without having to modify the
formula file, thereby streamlining the modification process
when changes need to be made. In addition, it provides the
capability for cross-referencing between configuration prop-
erties by allowing for variables in properties that refer to
other properties.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 illustrates the steps performed in accor-
dance with the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0013] FIG. 1 illustrates the steps performed in accor-
dance with the present invention. As an initial matter,
configuration files must either exist or be created that
comprise configuration properties having one or more vari-
ables of the format “$x{y}, where the “x” portion of the
variable is a primary variable comprising one or more
letters, and the “y” portion comprises a string that itself can
contain one or more variables of the same format (i.e.,
recursively nested variables) (e.g., “$x{$x{y}}”, “$x{$x{y}
$x{y}}”, “$x{$x{$x{y}}}”. etc). Creation of these vari-
ables is a relatively simple matter involving merely the use
of a text editor to place, for example, $C,$1.,$MB variables,
etc.

[0014] Configuration files are accessed through “keys” of
the format “config.section.name” that identify the configu-
ration file name (without the *.cfg extension), section name
in the file, and property name in the section, respectively.
Either all configuration files can be located in the same
directory, or else a “path” can be defined that specifies all
directories containing all configuration files.



