US 2006/0143146 Al

[database]
username=me
password*=mypassword

then the first time the file is loaded by the process, the value
is immediately encoded and the configuration file is updated,
as follows:

[database]
username=me
password*={xor} OS1sdjE7MyY=

[0035] The characters that follow the “{xor}” represent
the encoded string representing the password. Encoding is a
two-way process. If the algorithm used to encode the value
is known, then it can also be decoded to get the original
value. Therefore, if an encoded value is read from a con-
figuration file, the original value can be determined.

[0036] The process proceeds as follows. First, an asterisk
is added to the end of the property name of the property to
be encoded. Next, when the file gets loaded into memory
(see step 106 in FIG. 1), each property name is checked to
see if any of them ends in the “*” character. For each
property with an “*” character, if the property value has been
previously encoded (i.e., the value starts with “{xor}”) then
the value is decoded as it is loaded into memory (the
configuration file is unchanged). If the property value has
not been previously encoded (i.e., the value does not start
with “{xor}”), then the property value in the configuration
file is immediately overwritten with an encoded string. Any
algorithm can be used to encode the string.

[0037] The above-described steps can be implemented
using standard well-known programming techniques. The
novelty of the above-described embodiment lies not in the
specific programming techniques but in the use of the steps
described to achieve the described results. Software pro-
gramming code which embodies the present invention is
typically stored in permanent storage of some type, such as
permanent storage of a computer system. In a client/server
environment, such software programming code may be
stored with storage associated with a server. The software
programming code may be embodied on any of a variety of
known media for use with a data processing system, such as
a diskette, or hard drive, or CD-ROM. The code may be
distributed on such media, or may be distributed to users
from the memory or storage of one computer system over a
network of some type to other computer systems for use by
users of such other systems. The techniques and methods for
embodying software program code on physical media and/or
distributing software code via networks are well known and
will not be further discussed herein.

[0038] It will be understood that each element of the
illustrations, and combinations of elements in the illustra-
tions, can be implemented by general and/or special purpose
hardware-based systems that perform the specified functions
or steps, or by combinations of general and/or special-
purpose hardware and computer instructions.

[0039] These program instructions may be provided to a
processor to produce a machine, such that the instructions
that execute on the processor create means for implementing
the functions specified in the illustrations. The computer
program instructions may be executed by a processor to

Jun. 29, 2006

cause a series of operational steps to be performed by the
processor to produce a computer-implemented process such
that the instructions that execute on the processor provide
steps for implementing the functions specified in the illus-
trations. Accordingly, the figures support combinations of
means for performing the specified functions, combinations
of steps for performing the specified functions, and program
instruction means for performing the specified functions.

[0040] Although the present invention has been described
with respect to a specific preferred embodiment thereof,
various changes and modifications may be suggested to one
skilled in the art and it is intended that the present invention
encompass such changes and modifications as fall within the
scope of the appended claims.

We claim:

1. A method of returning dynamic results from the pro-
cessing of a configuration file by a processor, said processor
including a memory, comprising:

loading into memory a configuration file comprising
configuration properties having one or more variables;

resolving the variables of the configuration properties;
and

replacing each variable with the results of its respective
resolving step.
2. The method of claim 1, wherein said resolving step
includes, for each configuration property:

detecting each variable in said configuration property;

resolving any recursive variables in said configuration
property before resolving a primary variable in said
configuration property; and

resolving said primary variable.

3. The method of claim 2, wherein said resolving step is
executed when an external program attempts to access any
configuration properties containing variables.

4. The method of claim 2, wherein said resolving step is
performed using a variable resolver.

5. The method of claim 1, wherein said variables being
resolved comprise variables of the format “file.section.prop-
erty” which identify additional configuration properties.

6. The method of claim 1, wherein said variables being
resolved comprise boolean expressions.

7. The method of claim 1, wherein said variables being
resolved comprise integer math expressions.

8. The method of claim 1, wherein said variables being
resolved comprise float math expressions.

9. The method of claim 1, wherein said variables being
resolved comprise Java resource bundle properties.

10. A system of returning dynamic results from the
processing of a configuration file by a processor, said
processor including a memory, comprising:

means for loading into memory a configuration file com-
prising configuration properties having one or more
variables;

means for resolving the variables of the configuration
properties; and

means for replacing each variable with the results of its
respective resolving step.
11. The system of claim 10, wherein said means for
resolving includes, for each configuration property:



