US 2006/0026353 Al

may be fetched from main memory 106 and loaded into the
data array 238 of the RAMset. A hit in the RAMset logic
preferably takes precedence over the normal cache logic.
The standard logic of the two-way cache generates a miss
when the RAMset logic generates a hit. Information can
reside in both the RAMset and the two-way cache without
causing any misbehavior; the duplicated cache entry in the
2-way cache will eventually be evicted by the replacement
mechanism of the two-way cache because such data will not
be used. However, in the preferred embodiment the data
mapped onto a RAMset is first removed from the cache to
avoid a data coherency problem. When configured as a
RAMset, data array 2384, b, ¢ can be configured as a local
RAM or as a cached segment depending on the setting of a
suitable configuration bit (e.g., LR/C bit 231). However,
even when configured as a local RAM, individual valid bits
may be updated but misses do not generate accesses to the
external memory.

[0055] To configure a RAMset for operation, the Full_set-
_tag register 232 preferably is loaded with a start address
(set_start_addr) and the RAM_fill_mode bit 224 is config-
ured to a desired fill mode. The circuitry for filling the cache
can be the same as that used to fill lines of the set associative
cache. At least one fill mode may be implemented and is
referred to as a “line-by-line” fill mode as described below.
Other fill modes may be implemented if desired such as the
“set fill” mode described in at least one of the documents
incorporated by reference.

[0056] For the line-by-line fill (RAM_fill_mode=0), the
global valid bit 34 is set to “1” and each of the valid entry
bits 237 is set to “0” when the Full_set_tag register 232 is
loaded with the starting address. At this point, the data array
238 is empty (it is assumed that the Cache_Enable bit 226
is set to “1” to allow operation of the data storage 122).
Upon receiving an address from the core 120, a valid entry
bit 237 is selected based on the low order bits of the address.
As provided above, if the RAMset is 16 Kbytes in size,
organized as an array of 1Kx16 bytes, where 16 bytes is
equivalent to a block line in the associated 2-way cache, the
Full_set_TAG register 232 may store 18 bits [31:14] of the
starting address. The address indexing each entry of the
RAMset (ADDR[L]) may include 10 bits [13:4] while the
data address used to access one data value in the line may
include 4 bits [3:0] (assuming data accesses are 1 byte). In
Java, local variables comprise four byte entities but, as
explained previously, the RAMset may be shared between
local variables and other, possibly critical, data. Aline of the
data array 238 (at ADDR[L]) is loaded from main memory
106 each time that a miss situation occurs because the
comparator 240 determines a match between ADDR[H] and
the content of Full_set_TAG, the Global valid bit 34 is set
to “1” and the valid bit 237 associated with the line at
ADDR[L] is “0”. The state of the RAMset in this mode of
operation is also referred to as the cache policy “CP” state.
This situation indicates that the selected line is mapped to
the RAMset, but has not yet been loaded into the RAMset’s
data array 238. When the line is loaded into the data array
238 from main memory 106, the valid bit 237 corresponding
to the line is set to “17.

[0057] This loading procedure (resulting in the valid bit
being set to indicate the presence of valid data) has the same
time penalty as a normal cache line load, but the entry will
remain locked in the RAMset (i.e., the valid bit will remain

Feb. 2, 2006

set) unless the content of the Full_Set_Tag is changed and,
therefore, the processing device will not be penalized on a
subsequent access. As such, the lines used by a completed
method remain valid so that re-using the lines by subsequent
methods does not necessitate accesses to main memory 106.
Further, freeing the local variable space for a completed
method generally only involves disregarding the relevant
base pointer. Further still, there is no need to copy back local
variables upon to main memory 106 upon completion of a
method because such extinct local variables are not used any
more.

[0058] In some situations, the capacity of the D-RAMset
126 may not be sufficient to hold all desired local variables.
In accordance with at least one embodiment, excess local
variables may be stored in the non-D-RAMset data arrays
238. In accordance with other embodiments, a larger block
of local variables (i.e., larger than just the excess local
variables) may be mapped to the non-D-RAMset cache
ways. During the “invoke” bytecodes, that initiates a method
call, the local variable size of the called method is known by
the JVM 108. The JVM also knows the total RAMset size
(via a readable configuration register) and the RAMset size
already utilized. Therefore, based on this information, the
JVM may or may not decide to map the new local variable
area onto the RAMset. A method may have a large chunk of
local variables and not use them on each call. Therefore,
mapping those local variables onto the RAMset may force
unnecessary RAMset management of the base pointer and
saving/restoring of local variables of calling methods or may
cause more frequent overflow of a subsequently called
method. Instead, the JVM 108 may map the methods with
larger chunks of local variables onto the non-RAMset data
cache and thus preserve more space in the RAMset for
methods with a smaller number of local variables. In some
embodiments, many methods may have less than 10 local
variables and almost all methods have less than about 40
local variables, but, of course, these numerical characteriza-
tions are application dependent. For methods with many
local variables, the system may map those local variables
outside the RAMset avoiding penalizing other methods.
This technique is generally transparent for the return mecha-
nism because of the management of the PTR_LV of the
calling method. Upon completion of a method, the lines
containing that method’s local variables may remain marked
as valid. As noted above, maintaining such lines marked as
valid avoids generating misses in calls of new methods.

[0059] In accordance with some embodiments, more than
one contiguous block of external memory 106 may be
mapped onto the D-RAMset’s data array 238. As illustrated
in FIG. 9, for example, two contiguous blocks 600 and 602
of external memory 106 may be mapped onto the D-RAMset
126. Block 600 comprises 16K of contiguous bytes from the
address range of 0x0000 to Ox3FFF. Similarly, block 602
comprises 16K of contiguous bytes from the address range
of 0x8000 to OxBFFF. One block 600, 602 at a time may be
mapped onto the D-RAMset 126 by reprogramming the
D-RAMset’s Full_set_tag register 232 as explained previ-
ously.

[0060] A plurality of commands may be implemented in
connection with the data storage 122. Such commands may
include, without limitation, D-RAMset-Clean, D-RAMset-
Flush, and D-RAMset-policy-set. In addition to valid bits
237 for each line, a dirty bit also may be provided to indicate



