US 2002/0099954 Al

(step 456). Otherwise, if the procedure obtains the
name of the new SCR, the procedure continues to step
455.

[0151] 5. 1Instep 455, the procedure evaluates the newly
found SCR. The evaluation involves checking the
available information contained in the suspected mod-
ule, for example, the list of legal SCRs that the current
process expects to use, checksums, etc. If the procedure
concludes that the new SCR is produced by a valid
source, no alert is issued (step 457). If, however, the
SCR is determined to be a suspected one, an alert is
issued (step 456).

[0152] In the Embodiment of FIG. 5

[0153] In the embodiment of FIG. 5 the sensor performs
more than one of the procedures as described in FIGS.
4A-4E. If a procedure of any of said tests detects with
certainty an illegal action, an alert is issued. However, if non
of said tests provides a result with certainty, a weight is
given to each test result, and if the accumulated result of all
the tests is found to be above a threshold value, an alert is
issued.

[0154] 1. In step 291, the sensor accumulates informa-
tion from a plurality of tests. The tests of block 291 are
dealing with the comparison of structure by verification
of characteristics such as: the number of SCRs within
the stack; the chain order of the SCRs within the stack;
the time-stamps of the SCRs within the stack; the
names of the SCRs within the stack; a signature of each
SCR within the stack; the number of bits of each SCR
within the stack; a checksum of each SCR within the
stack; the physical path and name of each SCR within
the stack. Some of these tests and few orthogonal tests
are elaborated by the block diagrams of FIGS. 4A-4E,
and their corresponding descriptions.

[0155] 2. In step 292 a weight is given to each accu-
mulated result, and a combined result is calculated.
This is explained by FIG. 5.

[0156] 3. In step 294 the combined result of all tests is
compared with a preset threshold value, as registered in
knowledge base 150.

[0157] 4. If the combined result in step 294 is found to
be above the threshold, an alert is issued.

[0158] 5.1If, however, the combined result in step 294 is
found to be below the threshold, no alert is issued.

[0159] General Considerations

[0160] 1. A private sensor may also cover almost all the
cases that are covered by a public sensor. Public sensors
better handle active offenders of the ‘brain-transplant-
ing’ type (i.e., offenders that try to modify the behavior
of a process). However, when implementing a private
sensor, the special activities of the sensor’s probe
(which is an SCR) typically go into a separate thread,
to minimize the extra load on the protected component.

[0161] 2.Hybrid sensors, such as the sensor of FIG. 2B
(a high-level component coupled with a ‘guaranteed’
bottom-level handler), are best for detecting silent
manipulators, including those of the ‘direct-approach’
type, which do not communicate with their originating
process.

Jul. 25, 2002

[0162] 3. Preferably, the sensor comprises an authorized
‘learning’ program which may be operated periodically
to set and tune the threshold values by analyzing the
sensor’s performance. It may further tune the weights
of inputs to the threshold function, change action
parameters (e.g., to freeze an offender or not to freeze),
and enhance the small heuristic knowledge base of the
sensor (e.g., a digest of distinguished offenders).

[0163] 4. A risk-assessor program would weigh current
threats against available system resources and ask a
load-balancing program to load or unload sensors (or
other agents) as needed.

EXAMPLES

[0164] The following are some examples for possible
implementations of some of the concepts that are described
herein. The implementations should run on 32 bit Win-
dows™ operated machines. More particularly, the two
offender mechanisms that are described here can run on both
Win9x and NT, while the defender mechanism can run as is
on Win9x, and a slight modification enables it to run on NT
as well.

[0165] The concepts and mechanisms described here may
of course be adapted to other Operating Systems. Further-
more, even on the OSs referenced herein, namely Win-
dows™. there are many SCR chains, beyond the Windows
Message Hook mechanism, that may be exploited using the
principles and concepts that are described herein above.

[0166] The description herein is not meant to be fully
detailed or comprehensive: it is given here just for providing
an intuitive understanding of the mechanism. Many details
are omitted for the sake of brevity while keeping the essence
clear.

[0167] Following are the descriptions of two offender
mechanisms, a description of a defender for the second
scenario; this defender mechanism may be adapted to the
other first offender mechanism with a slight modification.
Thereafter, some notes are provided, concerning reference
material and technical details.

[0168] This appendix should be read and interpreted only
within the context of the main text.

[0169] Offender, Mechanism #1

[0170] 1. The offender launching program,
LAUNCHER1.EXE, initializes its connection to the
windows-hooks stack and does other common startup
things.

[0171] 2. LAUNCHERI1.EXE looks for its victim,
APP.EXE, by calling ::GetWindow. If found, it finds its
thread ID by calling :: GetWindowThreadProcessld and
passes it to CatchlnnocentApp, a function that is sup-
plied by HELPER.DLL.

[0172] 3. Function CatchInnocentApp retrieves it’s cur-
rent thread ID by calling ::GetCurrentThreadld and
stores it for global use, then it calls ::SetWindow-
sHookEx(WH_GETMESSAGE, . . .) on the victim’s
thread ID.

[0173] 4. It then calls ::PostThreadMessage on that
thread, passing it a WM_NULL or other nonsense
message, just to activate the hook on APP.EXE.



