US 2002/0099954 Al

[0174] 5. The callback function GetMsgProc, supplied
by HELPER1.DLL, waits for a WM_NULL (or equiva-
lent) message. This function always returns with a call
to ::CallNextHookEx.

[0175] 6. When GetMsgProc receives the anticipated
message, it calls SubclasslnnocentApp which simply
calls ::SetWindowLong (. . . , GWL_WNDPROC, . .
.) on either the victim’s window or one of its children,
passing the address of NewVictimProc while storing
the returned original procedure address for a later use.

[0176] 7. The callback function NewVictimProc does
whatever it wishes upon receiving the messages it
wishes to divert. Other messages are passed to the
original procedure with :: CallWindowProc.

[0177] 8. Clean-up procedures are not covered here.
[0178] Offender, Mechanism #2

[0179] 1. The offender launching program,
LAUNCHER2.EXE, initializes its connection to the
windows-hooks stack and does other common startup
things.

[0180] 2. LAUNCHER2.EXE calls CatchInnocentApp,
a function that is supplied by HELPER2.DLL, passing
it it’s own current thread ID.

[0181] 3. Function CatchlnnocentApp calls ::SetWin-
dowsHookEx(WH_KEYBOARD, . . .) on all threads
on this ‘desktop’ object (last argument is 0). On
advanced versions of windows, calling ::SetWindow-
sHookEx (WH_KEYBOARD _LL, . . .) can provide
low-level keyboard input events.

[0182] 4. The callback function KeyBoardProc supplied
by HELPER2.DLL, waits for a keyboard message. It
also checks to see that the current thread ID is not the
thread ID of LAUNCHER2.EXE. This function always
returns with a call to: CallNextHookEx.

[0183] 5. When KeyBoardProc receives a keyboard
message, it can do with it whatever it wishes. This
would typically include processing the keyboard status
and the thread current language setting to interpret the
exact meaning of the key(s) pressed, then sending the
information out to an unauthorized person.

[0184] 6. Clean-up procedures are not covered here.
[0185] Defender for Offender Mechanism #2

[0186] 1. The launching program, DEFENDER.EXE,
initializes its connection with the windows-hooks stack
and does other common startup things.

[0187] 2. DEFENDER.EXE calls to CatchBadApp, a
function which is supplied by ASSITANT.DLL, pass-
ing it its own current thread ID.

[0188] 3. Function CatchBadApp calls ::SetWindow-
sHookEx(WH_DEBUG, . . .) on all threads on this
‘desktop’ object (last argument is 0).

[0189] 4. It then calls :SetWindowsHookEx(WH-
_GETMESSAGE, . . .) on all threads on this ‘desktop’
object (last argument is 0). There are now two hooks
managed by ASSISTANT.DLL (the purpose of the
second hook will be apparent thereafter).

Jul. 25, 2002

[0190] 5. The callback function DebugProc, supplied by
ASSISTANT.DLL, waits for a keyboard hook notifi-
cation, WH_KEYBOARD. This function always
returns with a call to :CallNextHookEx.

[0191] 6. When DebugdProc receives an anticipated
notification (in this case, a keyboard), the OS also
supplies it with a :: DEBUGHOOKINFO structure, so it
can retrieve both the thread ID of the thread containing
the filter function and the thread ID of the thread that
installed the debugging hook. (Important note: this step
was demonstrated on Win9x but not on NT. See the
notes in a later section for more details).

[0192] 7. Now DebugdProc calls ::PostThreadMessage
on the installer thread ID, passing it a user-defined
message, WM_DEFENDER. It also supplies the con-
taining thread ID as LPARAM as a hint for the receiver.

[0193] 8. GetMsgProc waits for a WH_MSG notifica-
tion of message type WM_DEFENDER. When
received, it calls ::GetModuleFileName to retrieve the
bad application’s name (and full path).

[0194] 9. Now GetMsgProc can do whatever it wishes
with the offending program, acting from within the
thread of the offending program. The simplest act
would be posing a message to the user, asking him if he
wishes to close the program and letting him know the
name and path of the suspected offender. If the user
decides to close the suspect, GetMsgProc would simply
call ::ExitThread for a graceful exit. Of course there are
many other, more sophisticated acts that may be taken.

[0195] 10. Clean-up procedures are not covered here.
[0196] Some Notes

[0197] 1. A part of the mechanism that is described
herein is covered in well known programming books
and in other publicly available articles. These, however,
are mainly concerned with the task of bringing a DLL
into the address space of another process (or ‘injecting’
it)—not with the malicious acts that may follow, nor in
the ways of detecting such acts—the later being the
main concern of the present invention.

[0198] 2. On Windows NT and its descendants (like
Windows 2000), the system seems not to provide the
offender thread ID with the DEBUGHOOKINFO
structure. This behavior seems to be inconsistent with
the current official on-line documentation that also
seems to state that the DEBUGHOOKINFO structure is
not implemented on Win9x, a statement that is appar-
ently imprecise. Neglecting to handle these (apparently
misdocumented) details will lead to a lame implemen-
tation of the defender under Windows NT and its
descendants, while the previously described offender
goes undisturbed.

[0199] 3. The concepts are not dependent on the previ-
ously described specific OS-supplied API for detecting
the presence of a new DLL or the invocation of some
procedures; using such a mechanism is just a conve-
nience that keeps this example simple. Many comple-
mentary tools and mechanisms exist, and more may be
devised for fulfilling this task.

[0200] 4. The importance of retrieving and storing dif-
ferent thread IDs is due to the fact that the mechanism

