US 2003/0130854 Al

web server 202. As discussed below, web server 202 can also
include an authoring mechanism that can dynamically gen-
erate client-side markups and scripts. In a further embodi-
ment, the web server 202, recognition server 204 and client
30 may be combined depending on the capabilities of the
implementing machines. For instance, if the client comprises
a general purpose computer, e.g. a personal computer, the
client may include the recognition server 204. Likewise, if
desired, the web server 202 and recognition server 204 can
be incorporated into a single machine.

[0044] Access to web server 202 through phone 80
includes connection of phone 80 to a wired or wireless
telephone network 208, that in turn, connects phone 80 to a
third party gateway 210. Gateway 210 connects phone 80 to
a telephony voice browser 212. Telephone voice browser
212 includes a media server 214 that provides a telephony
interface and a voice browser 216. Like device 30, telephony
voice browser 212 receives HTML scripts or the like from
web server 202. In one embodiment, the HTML scripts are
of the form similar to HTML scripts provided to device 30.
In this manner, web server 202 need not support device 30
and phone 80 separately, or even support standard GUI
clients separately. Rather, a common markup language can
be used. In addition, like device 30, voice recognition from
audible signals transmitted by phone 80 are provided from
voice browser 216 to recognition server 204, either through
the network 205, or through a dedicated line 207, for
example, using TCP/IP. Web server 202, recognition server
204 and telephone voice browser 212 can be embodied in
any suitable computing environment such as the general
purpose desktop computer illustrated in FIG. 3.

[0045] However, it should be noted that if DTMF recog-
nition is employed, this form of recognition would generally
be performed at the media server 214, rather than at the
recognition server 204. In other words, the DTMF grammar
would be used by the media server 214.

[0046] Referring back to FIG. 4, web server 202 can
include a server side plug-in authoring tool or module 209
(e.g. ASP, ASP+, ASP.Net by Microsoft Corporation, JSP,
Javabeans, or the like). Server side plug-in module 209 can
dynamically generate client-side markups and even a spe-
cific form of markup for the type of client accessing the web
server 202. The client information can be provided to the
web server 202 upon initial establishment of the client/
server relationship, or the web server 202 can include
modules or routines to detect the capabilities of the client
device. In this manner, server side plug-in module 209 can
generate a client side markup for each of the voice recog-
nition scenarios, i.e. voice only through phone 80 or mul-
timodal for device 30. By using a consistent client side
model, application authoring for many different clients is
significantly easier.

[0047] In addition to dynamically generating client side
markups, high-level dialog modules, discussed below, can
be implemented as a server-side control stored in store 211
for use by developers in application authoring. In general,
the high-level dialog modules 211 would generate dynami-
cally client-side markup and script in both voice-only and
multimodal scenarios based on parameters specified by
developers. The high-level dialog modules 211 can include
parameters to generate client-side markups to fit the devel-
opers’ needs.

Jul. 10, 2003

Exemplary Client Side Extensions

[0048] Before describing dynamic generation of client-
side markups to which the present invention is directed, it
may be helpful to first discuss an exemplary form of
extensions to the markup language for use in web based
recognition.

[0049] As indicated above, the markup languages such as
HTML, XHTML cHTML, XML, WML or any other
SGML-derived markup, which are used for interaction
between the web server 202 and the client device 30, are
extended to include controls and/or objects that provide
recognition in a client/server architecture. Generally, con-
trols and/or objects can include one or more of the following
functions: recognizer controls and/or objects for recognizer
configuration, recognizer execution and/or post-processing;
synthesizer controls and/or objects for synthesizer configu-
ration and prompt playing; grammar controls and/or objects
for specifying input grammar resources; and/or binding
controls and/or objects for processing recognition results.
The extensions are designed to be a lightweight markup
layer, which adds the power of an audible, visual, handwrit-
ing, etc. interface to existing markup languages. As such, the
extensions can remain independent of: the high-level page in
which they are contained, e.g. HTML; the low-level formats
which the extensions used to refer to linguistic resources,
e.g. the text-to-speech and grammar formats; and the indi-
vidual properties of the recognition and speech synthesis
platforms used in the recognition server 204. Although
speech recognition will be discussed below, it should be
understood that the techniques, tags and server side controls
described hereinafter can be similarly applied in handwriting
recognition, gesture recognition and image recognition.

[0050] In the exemplary embodiment, the extensions (also
commonly known as “tags”) are a small set of XML
elements, with associated attributes and DOM object prop-
erties, events and methods, which may be used in conjunc-
tion with a source markup document to apply a recognition
and/or audible prompting interface, DTMF or call control to
a source page. The extensions’ formalities and semantics are
independent of the nature of the source document, so the
extensions can be used equally effectively within HTML,
XHTML, cHTML, XML, WML, or with any other SGML.--
derived markup. The extensions follow the document object
model wherein new functional objects or elements, which
can be hierarchical, are provided. Each of the elements are
discussed in detail in the Appendix, but generally the ele-
ments can include attributes, properties, methods, events
and/or other “child” elements.

[0051] At this point, it should also be noted that the
extensions may be interpreted in two different “modes”
according to the capabilities of the device upon which the
browser is being executed on. In a first mode, “object
mode”, the full capabilities are available. The programmatic
manipulation of the extensions by an application is per-
formed by whatever mechanisms are enabled by the browser
on the device, e.g. a JScript interpreter in an XHTML
browser, or a WMLScript interpreter in a WML browser. For
this reason, only a small set of core properties and methods
of the extensions need to be defined, and these manipulated
by whatever programmatic mechanisms exist on the device
or client side. The object mode provides eventing and
scripting and can offer greater functionality to give the



