US 2003/0130854 Al

to go to Seattle?”“Yes, to Seattle”), to correct by saying
“no”+new value (e.g., “Do you want to go to Seattle”No,
Pittsburgh”).

[0106] Statement Control

[0107] The statement control allows the application devel-
oper to provide an output upon execution of the client side
markup when a response is not required from the user of the
client device 30. An example could be a “Welcome™ prompt
played at the beginning of execution of a client side markup

page.

[0108] An attribute can be provided in the statement
control to distinguish different types of information to be
provided to the user of the client device. For instance,
attributes can be provided to denote a warning message or a
help message. These types could have different built-in
properties such as different voices. If desired, different forms
of statement controls can be provided, i.e. a help control,
warning control, etc. Whether provided as separate controls
or attributes of the statement control, the different types of
statements have different roles in the dialog created, but
share the fundamental role of providing information to the
user of the client device without expecting an answer back.

[0109] Eventing

[0110] Event handlers as indicated in FIG. 11 are provided
in the QA control 320, the output controls 308 and the input
controls 310 for actions/inactions of the user of the client
device 30 and for operation of the recognition server 204 to
name a few, other events are specified in Appendix B. For
instance, mumbling, where the speech recognizer detects
that the user has spoken but is unable to recognize the words
and silence, where speech is not detected at all, are specified
in the QA control 320. These events reference client-side
script functions defined by the author. In a multimodal
application specified earlier, a simple mumble handler that
puts an error message in the text box could be written as
follows:

<Speech:QA
controlsToSpeechEnable=“txtDepCit
v’ onClientNoReco=“OnMumble ()
runat="server” >
<Answer id=“AnsDepCity”
StartEvent=“onMouseDown”
StopEvent="onMouseUp”
>
<grammar src="/grammars/depCities.gram”/>
<bind value="//sml/DepCity”
targetElement="“txtCity” />
</Answer>
</Speech:QA>
<script>
function OnMumble () {
txtDepCity.value=". . . recognition

.

error . . .”;

</script>

[0111] Control Execution Algorithm

[0112] In one embodiment, a client-side script or module
(herein referred to as “RunSpeech”) is provided to the client
device. The purpose of this script is to execute dialog flow
via logic, which is specified in the script when executed on

Jul. 10, 2003

the client device 30, i.e. when the markup pertaining to the
controls is activated for execution on the client due to values
contained therein. The script allows multiple dialog turns
between page requests, and therefore, is particularly helpful
for control of voice-only dialogs such as through telephony
browser 216. The client-side script RunSpeech is executed
in a loop manner on the client device 30 until a completed
form in submitted, or a new page is otherwise requested
from the client device 30.

[0113] 1t should be noted that in one embodiment, the
controls can activate each other (e.g. question control acti-
vating a selected answer control) due to values when
executed on the client. However, in a further embodiment,
the controls can “activate” each other in order to generate
appropriate markup, in which case server-side processing
may be implemented.

[0114] Generally, in one embodiment, the algorithm gen-
erates a dialog turn by outputting speech and recognizing
user input. The overall logic of the algorithm is as follows
for a voice-only scenario:

[0115] 1. Find next active output companion control;

[0116] 2.Ifitis astatement, play the statement and go
back to 1; If it is a question or a confirm go to 3;

[0117] 3. Collect expected answers;

[0118] 4. Collect commands;

[0119] 5. Play output control and listen in for input;
[0120] 6. Activate recognized Answer or Command

object or, issue an event if none is recognized;
[0121] 7. Go back to 1.

[0122] Inthe multimodal case, the logic is simplified to the
following algorithm:

[0123] 1. Wait for triggering event—i.e., user tapping
on a control;

[0124] 2. Collect expected answers;
[0125] 3. Listen in for input;

[0126] 4. Activate recognized Answer object or, if
none, throw event;

[0127] 5. Go back to 1.

[0128] The algorithm is relatively simple because, as
noted above, controls contain built-in information about
when they can be activated. The algorithm also makes use of
the role of the controls in the dialogue. For example state-
ments are played immediately, while questions and confir-
mations are only played once the expected answers have
been collected.

[0129] In a further embodiment, implicit confirmation can
be provided whereby the system confirms a piece of infor-
mation and asks a question at the same time. For example the
system could confirm the arrival city of a flight and ask for
the travel date in one utterance: “When do you want to go
to Seattle?” (i.e. asking ‘when’ and implicitly confirming
‘destination: Seattle”). If the user gives a date then the city
is considered implicitly accepted since, if the city was
wrong, users would have immediately challenged it. In this
scenario, it becomes clear that the knowledge of what a user
is trying to achieve is vitally important: are they answering

