US 2005/0132356 Al

SELF-DESCRIBING SOFTWARE IMAGE UPDATE
COMPONENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present invention claims priority to U.S. pro-
visional patent application Ser. No. 60/530,129 filed Dec.
16, 2003, and incorporated herein in its entirety.

[0002] The present invention is related to the following
U.S. patent applications, filed concurrently herewith and
incorporated herein in their entireties:

[0003] Docket no. 4271/307,649 “Applying Custom Soft-
ware Image Updates To Non-Volatile Storage in a Failsafe
Manner;”

[0004] Docket no. 4281/307,650 “Determining the Maxi-
mal Set of Dependent Software Updates Valid for Installa-
tion”

[0005] Docket no. 4291/307,651 “Ensuring that a Soft-
ware Update may be Installed or Run only on a Specific
Device or Class of Devices” and

[0006] Docket no. 4311/307,663 “Creating File Systems
Within a File In a Storage Technology-Abstracted Manner.”

FIELD OF THE INVENTION

[0007] The invention relates generally to computing
devices, and more particularly to updating non-volatile
storage of computing devices.

BACKGROUND

[0008] Mobile computing devices such as personal digital
assistants, contemporary mobile telephones, and hand-held
and pocket-sized computers are becoming important and
popular user tools. In general, they have become small
enough to be extremely convenient, while consuming less
battery power, and at the same time have become capable of
running more powerful applications.

[0009] During the process of manufacturing such devices,
embedded operating system images are typically built into a
monolithic image file and stored in non-volatile storage
(e.g., NAND or NOR flash memory, a hard disk and so forth)
of each device. As a result, updating such a device is
necessary or desirable from time-to-time.

[0010] However, a monolithic operating system has a
number of disadvantages, including that to install an update,
a large amount of resources (e.g., temporary storage and
bandwidth) are needed to replace the entire monolithic
image. At the same time, installing some subset components
of the operating system is a difficult task, for various
reasons. What is needed are mechanisms that facilitate the
updating of some subset of an operating system image.

SUMMARY OF THE INVENTION

[0011] Briefly, the present invention is directed towards a
system and method that provide installation and update
packages, wherein each package comprises an encapsulation
of a set of files that which are treated the same for the
purposes of installation, and wherein the format of the
package is self-describing, thereby facilitating the replace-
ment of only component parts of an image. To this end, the

Jun. 16, 2005

system and method maps operating system features (com-
prising files, metadata, configuration information and so
forth) into packages as part of a software build process.

[0012] In one implementation, packaging logic handles
cases where specific files and/or settings are shared between
related features, which the user in turn chooses to map to
differing packages. The logic generally ensures that indi-
vidual files/settings are mapped to the correct package,
given a number of possible higher level package mapping
requests. Further, packages optionally convey dependency
information, and thus a mechanism is provided (via feature-
level dependency specifications) by which packages acquire
the dependency information. Logic resolves conflicts and
dependencies below the feature level.

[0013] During the build process, a build manifest file is
created by taking a binary image builder file for the oper-
ating system image and a component to package mapping
file as inputs. The build manifest file specifies the file
contents for a particular package. These file contents are
reviewed, and any executable code is processed prior to
insertion into the package to enable executable code relo-
cation/fix-up on the device at install time. A package gen-
eration process creates the device manifest based on infor-
mation in the build manifest and a package definition file.

[0014] The registry for the operating system image is
broken up and assigned to packages based on a similar
algorithm, and XML files may be similarly broken up and
assigned to specific packages. The result is a number of files
for each package that is to be constructed, possibly including
a package definition file, a component mapping file, a
component relations file, a build manifest file; registry file
and an XML settings file. From these files a package
generation process constructs a final package file by creating
a package collection from the packages, including mapping
each package to the package definition, reading the build
manifest file for that package and generating the package
from that data.

[0015] For a package to be self-describing, a device mani-
fest file is created during the packaging process and stored
in the package itself. The device manifest file is used during
the installation process. Package dependency and shadow
(package settings priority) data is also part of the data
accompanying a package, e.g., by writing it into the device
manifest file.

[0016] Other advantages will become apparent from the
following detailed description when taken in conjunction
with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIG. 1 is a block diagram generally representing a
computer system into which the present invention may be
incorporated;

[0018] FIG. 2 is a block diagram representing various
components for constructing self-describing update pack-
ages, in accordance with an aspect of the present invention;

[0019] FIG. 3 is a flow diagram representing logic for
creating a build manifest file from a binary image file in
accordance with an aspect of the present invention;

[0020] FIG. 4 is a flow diagram representing logic for
creating a registry settings-related file from registry settings
in accordance with an aspect of the present invention;



