US 2005/0132356 Al

[0021] FIG. 5 is a flow diagram representing logic for
processing an XML-formatted file for writing data therefrom
into a package, in accordance with an aspect of the present
invention;

[0022] FIG. 6 is a flow diagram representing logic for
generating a package, in accordance with an aspect of the
present invention;

[0023] FIGS. 7A and 7B comprise a flow diagram rep-
resenting logic for creating a device manifest file to describe
a package, in accordance with an aspect of the present
invention;

[0024] FIG. 8 is a flow diagram representing logic per-
formed by a tool (relmerge) to insert relocation information
for executable files, in accordance with an aspect of the
present invention;

[0025] FIG. 9 is a block diagram representing the format
of a device manifest file that describes a package, in accor-
dance with an aspect of the present invention;

[0026] FIGS. 10A and 10B comprise flow diagrams for
building a device manifest file to describe a package, in
accordance with an aspect of the present invention; and

[0027] FIG. 11 is a flow diagram representing the creation
of a package, in accordance with an aspect of the present
invention;

DETAILED DESCRIPTION

EXEMPLARY OPERATING ENVIRONMENT

[0028] FIG. 1 shows functional components of one such
handheld computing device 120, including a processor 122,
a memory 124, a display 126, and a keyboard 128 (which
may be a physical or virtual keyboard, or may represent
both). A microphone 129 may be present to receive audio
input. The memory 124 generally includes both volatile
memory (e.g., RAM) and non-volatile memory (e.g., ROM,
PCMCIA cards, and so forth). An operating system 130 is
resident in the memory 124 and executes on the processor
122, such as the Windows® operating system from
Microsoft Corporation, or another operating system.

[0029] One or more application programs 132 are loaded
into memory 124 (or execute in place in ROM) and run on
the operating system 130. Examples of applications include
email programs, scheduling programs, PIM (personal infor-
mation management) programs, word processing programs,
spreadsheet programs, Internet browser programs, and so
forth. The handheld personal computer 120 may also include
anotification manager 134 loaded in the memory 124, which
executes on the processor 122. The notification manager 134
handles notification requests, e.g., from the application
programs 132. Also, as described below, the handheld per-
sonal computer 120 includes networking software 136 (e.g.,
hardware drivers and the like) and network components 138
(e.g., a radio and antenna) suitable for connecting the
handheld personal computer 120 to a network, which may
include making a telephone call.

[0030] The handheld personal computer 120 has a power
supply 140, which is implemented as one or more batteries.
The power supply 140 may further include an external
power source that overrides or recharges the built-in batter-
ies, such as an AC adapter or a powered docking cradle.

Jun. 16, 2005

[0031] The exemplary handheld personal computer 120
represented in FIG. 1 is shown with three types of external
notification mechanisms: one or more light emitting diodes
(LEDs) 142 and an audio generator 144. These devices may
be directly coupled to the power supply 140 so that when
activated, they remain on for a duration dictated by a
notification mechanism even though the handheld personal
computer processor 122 and other components might shut
down to conserve battery power. The LED 142 preferably
remains on indefinitely until the user takes action. Note that
contemporary versions of the audio generator 144 use too
much power for today’s handheld personal computer bat-
teries, and so it is configured to turn off when the rest of the
system does or at some finite duration after activation.

[0032] Note that although a basic handheld personal com-
puter has been shown, virtually any device capable of
receiving data communications and processing the data in
some way for use by a program, such as a mobile telephone,
is equivalent for purposes of implementing the present
invention.

SELF-DESCRIBING SOFTWARE IMAGE
UPDATE COMPONENTS

[0033] The present invention is generally directed towards
installing and/or updating software that is stored on small
mobile computing devices, such as Microsoft Windows®
CE-based portable devices, including those in which the
initial software or software update is written to the embed-
ded device’s non-volatile memory, e.g., flash memory. Not-
withstanding, the present invention provides benefits to
computing in general, and thus may apply to other
computing’devices and other types of storage, including
various types of memory and/or other types of storage media
such as hard disk drives. For purposes of simplicity, the term
“flash” hereinafter may be used with reference to the updat-
able storage of a device, although it is understood that any
storage mechanism is equivalent. Further, the term “image”
will generally include the concept of the initial software
installation image as well as subsequent software updates to
an image, even when only part of an existing image is
updated.

[0034] By way of background, contemporary operating
systems such as the Windows® CE operating system are
modular (componentized) However, the resultant image that
contains the correct files and settings is a monolithic oper-
ating system image. To this end, at build time, feature
variables are mapped to specific files and settings to deter-
mine what is contained in the resultant monolithic operating
system image. The ability to perform this mapping makes
use of two types of build-time configuration files: binary
image builder (.bib) and registry (.reg) files. The .bib file
contains a list of files which are to be included in the
resultant image, and the reg file contains a list of registry
(setting) information to be included in the image. The
contents of these files are grouped into collections by feature
and wrapped in conditional variables which can optionally
be set at build time. When a conditional feature variable is
set at build time, the associated contents of the .bib and .reg
files are included in the image, and as such the user of the
system has the ability to select, at a granular feature level,
what the resultant image should contain.

[0035] Higher-level logic is also applied to the selection of
conditional variables, such that feature-level dependencies



