US 2005/0132356 Al

are self-satisfying. In other words, selecting one feature will
also cause other features, on which the selected feature is
dependent, to be selected. The build system thus ensures that
a self-consistent monolithic operating system image results
from any random selection of features on the part of the user.
However, as described above, a monolithic operating system
image has disadvantages relative to an image comprised in
which subparts of the image can be individually updated.

[0036] In accordance with an aspect of the present inven-
tion, images including software updates are built from
self-contained, secure entities. A fundamental update primi-
tive is referred to as a package, wherein in general, a
package is an encapsulation of a set of files that are ver-
sioned the same and are updated as a unit. The present
invention provides a package format as one which is self-
describing, a significant improvement when updating
images, and one that facilitates replacing only a component
part of an image.

[0037] Images are built from packages and contain both
executable code and data that may be applied to storage.
Note that executable code is customized to the virtual
address space environment of the embedded device at install
time; for example, depending on the underlying flash
memory technology, some devices allow executable code to
be run directly from the flash (execute-in-place, which
means that the code cannot be stored in a compressed
format) while other devices require that the code be copied
(including decompressing the code as necessary) into RAM
in order to run. In keeping with an aspect of the present
invention, image update technology uses packages to break
the operating system image into updateable components that
can be updated in isolation, while maintaining any cross-
component dependencies.

[0038] In accordance with an aspect of the present inven-
tion, there is provided a system and method that maps
operating system features (comprising files, metadata, con-
figuration information and so forth) into packages as part of
a software build process. The packages can be used for
initial device installation, and also for updates. As described
below, software update packages may be in various forms,
for example some may contain only the changes (deltas) to
a previous update, while others may contain files that
entirely replace other files. One other type of package can
contain other packages.

[0039] The package concept described herein is a compo-
nent part of the updating process. The process by which
operating system features (generally an abstract concept that
maps to specific files, metadata, configuration information,
and so forth) are mapped into packages provides an ease-
of-use advantage for the user (e.g., the provider of the
image), including that instead of having to identify the

Jun. 16, 2005

lowest level components of an operating system image, the
user is able to refer to higher level handles that describe a
full set of associated files, metadata, configuration informa-
tion and so forth for a particular aspect of the operating
system image. Note that as used herein, the terms “feature”
and “component” ordinarily may be used interchangeably.
By referring to a feature handle, the user is able to gain an
advantage in terms of managing packaging complexity
through abstraction. For example, rather than specifically
mapping the executable module, dynamically-linked librar-
ies (DLLs), resource/data files, registry information, and the
like for browsing component software (e.g., Internet
Explorer) and individually mapping each part into a pack-
age, the present invention enables the user to refer to this
associated information with a single “Internet Explorer”
handle and thus map it at the feature level to a package.

[0040] The present invention also provides packaging
logic to handle cases where specific files/settings are shared
between related features, which the user in turn chooses to
map to differing packages. The logic in various algorithms
(described below) generally ensures that individual files/
settings are mapped to the correct package, given a number
of possible higher level package mapping requests. In situ-
ations in which the logic cannot determine a correct course
of action, messaging is provided to the user to indicate any
issues that require user intervention to resolve.

[0041] Further, packages optionally convey dependency
information. For example, when the contents of a package
rely on the contents of another package, the relationship is
captured during the build process and encoded into the
package for later analysis during the installation process.
The present invention also provides a mechanism (via
feature-level dependency specifications) by which packages
acquire the dependency information.

[0042] In accordance with an aspect of the present inven-
tion, feature selections can be mapped to an array (one or
more) of packages, resulting in specific files and settings
being mapped to an appropriate package. To accomplish this
correctly, logic resolves conflicts and dependencies below
the feature level. For example, if two features logically refer
to the same specific file and the features are mapped to
different packages, the logic determines into which package
the shared file is to be placed.

[0043] Inone implementation, package files are defined at
build time by three different files: a package definition file
(pkd), a component mapping file (cpm), and a component
relations file (crf). The pkd file defines the global attributes
of the contents of a package. The pkd file is an XML file that
is validated during the build process against the following
XSD:

<?xml version="1.0" encoding="utf-8” 7>

<xs:schema targetNamespace="http://tempuri.org/Packages.xsd” elementFormDefault="qualified”
xmlns=“http://tempuri.org/Packages.xsd” xmlns:mstns=“http://tempuri.org/Packages.xsd”

xmins:xs=“http://www.w3.01g/2001/XMLSchema”
xmlns:xsi=“http://www.w3.0rg/2001/XMLSchema-instance”>
<xs:element name=“PackageCollection”>

<xs:complexType>
<xsisequence>



