US 2005/0132356 Al

-continued
Term General Definition
Package A collection of components that is signed and
packaged for distribution
Manifest A file which describes the contents of a package.
(package, Note that in the build environment, there is a
build and package manifest file (with a .BIB extension) that
device) contains entries which describe the names of each
file in the package; and a different manifest file,
a device side manifest (with a .DSM extension), is a
binary file that describes the complete set of
information about a package (described below with
reference to FIG. 9). As described with reference
to FIG. 3, a build manifest file is created from the
package manifest file, and used by a package
generation process that generates the device
manifest file (and the rest of the package).
Shadow Build tool which processes the Component
Order Tool Relationships File and generates the Package Shadow
Files.
[0058]
Exten. File Type General Description
.bib Binary image Contains a list of files which should
builder be included in the resultant image
reg registry file file contains a list of registry
(setting) information to be included in
the image
.pkd.xml Package XML file in the build tree which
Definition defines what packages exist (package
File name, guid, version, loc buddy)
.cpm.csv Component to CSV file in the build tree which maps
Package MODULES tags and files to packages
Mapping file
.crf.csv Component Text file in the build tree which
Relationships defines the relationships (shadow and
File dependency) between MODULES tags
Jbsm.xml Build Side an XML file translation of the .bib
Manifest File (binary image builder) file
.pst Package Shadow Intermediate file in the build
File environment (one per package, as in
<packagename>.psf) which lists the
packages that need to be shadowed by
the named package.
.dsm Device Side File on the device (one per package)
Manifest file which describes the package (files in
the package, name, guid, signature,
version, shadows, dependencies, CRC,
root certs, etc.)
.pkg.cab Canonical Full version of a package which
Package file contains the complete file for all
files in the package.
.pku.cab Update Package A file which facilitates the update of
file a device from a specific version of a
single package to a different version
of the same package. This file may
contain binary diffs of individual
files, or complete files, whichever
minimizes the size of the update
package.
.pks.cab Super Package A file which contains a collection of
file Update Packages and/or Canonical
Packages.

[0059] Turning to FIG. 2 of the drawings, as part of the
overall package generation process, during the build process
a build manifest file 202 is created by taking a binary image
builder file 204 (the .bib file, also referred to as a package
manifest file) for the operating system image and a compo-

Jun. 16, 2005

nent to package mapping file 206 as inputs. As described
above, the build manifest file 202 specifies the file contents
for a particular package.

[0060] FIG. 3 generally shows an example build manifest
file creation process 208 by which the build manifest file 202
is created from the binary image builder file 204. As can be
seen from FIG. 3, in general, each line in the binary image
builder file 204 is parsed; lines that parse as a .bib file entry
having valid tags (looked up in an execute-in-place table
(steps 310 and 312) may be compressed as desired (step
318), and written to the build manifest file 202 (step 320).

[0061] The resultant build manifest file 202 is an XML file
that is validated with the following XSD:

<?xml version="1.0" encoding="utf-8” 7>
<xs:schema targetNamespace="http://tempuri.org/ManifestCollection.xsd”
elementFormDefault="qualified”
xmins=“http://tempuri.org/ManifestCollection.xsd”
xmlns:mstns="“http://tempuri.org/ManifestCollection.xsd”
xmins:xs=“http://www.w3.0rg/2001/XMLSchema’>
<xs:element name=“ManifestCollection”>
<xs:complexType>
<xs:sequence>
<xs:element name=“BibFileEntry” minOccurs="1"
maxOccurs=“unbounded”>
<xs:complexType>
<xXs:sequence>
<xs:element name=“DeviceName”
type=“xs:string”
minOccurs=“1" maxOccurs=“1" />
<xs:element name=“ReleaseName”
type=“xs:string”
minOccurs=“1" maxOccurs=“1" />
<xs:element name=“Region”
type=“xs:string”
minOccurs=“1" maxOccurs=“1" />
<xs:element name=“Section”
type=“xs:string”
minOccurs=“1" maxOccurs=“1" />
<xs:element name=“Attribs”
type=“xs:string”
minOccurs=“0" maxOccurs=“1" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

[0062] Similar to the way in which the build manifest file
202 was created, the registry for the operating system image
is broken up (into what is sometimes referred to as an RGU
file) and assigned to packages based on a similar algorithm.
An example of such a process 210 (FIG. 2) is depicted in
FIG. 4, wherein the registry settings 212 (FIG. 2) associated
with valid tags (step 414), including their registry key names
as appropriate, are written into the package RGU file (step
422). Note that the registry key names are written to that
package’s RGU file whenever a package being processed
changes (steps 418 and 420).

[0063] Further, XML files 218 (FIG. 2, e.g., containing
other settings) may be broken up and assigned to specific
packages. An example process 220 for doing this is depicted
in FIG. 5, wherein valid tags for the children nodes (evalu-
ated at step 508) are assigned to a node of the package (step
514).



